
Data-Centric Engineering (2024), 1–44
doi:10.1017/xxxx

RESEARCH ARTICLE

Open Energy Services - Forecasting and Optimization as
a Service for Energy Management Applications at Scale
David Wölfle1 *, Kevin Förderer2 , Tobias Riedel1 , Natascha Fernengel2 , Lukas
Landwich1, Ralf Mikut2 , Veit Hagenmeyer2 and Hartmut Schmeck1

1Intelligent Systems and Production Engineering, FZI Research Center for Information Technology, Haid-und-
Neu-Str. 10–14,76131 Karlsruhe, Germany
2Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-
Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Corresponding author. E-mail: woelfle@fzi.de

Received: 05 August 2024

Keywords: software framework; building energy management; building energy optimization; building control;
model predictive control; forecasting; smart building

Abstract
This article aims at facilitating the widespread application of Energy Management Systems (EMSs),
especially on buildings and cities, in order to support the realization of future carbon-neutral energy
systems. We claim that economic viability is a severe issue for the utilization of EMSs at scale and
that the provisioning of forecasting and optimization algorithms as a service can make a major con-
tribution to achieve it. To this end, we present the Energy Service Generics software framework that
allows the derivation of fully functional services from existing forecasting or optimization code with
ease. This work documents the strictly systematic development of the framework, beginning with a
requirement analysis, from which a sophisticated design concept is derived, followed by a description
of the implementation of the framework. Furthermore, we present the concept of the Open Energy
Service community, our effort to continuously maintain the service framework but also provide ready-
to-use forecasting and optimization services. Finally, an evaluation of our framework and community
concept, as well as a demarcation between our work and the current state of the art, is presented.

Impact Statement
Energy management will likely play a vital role in future carbon-neutral energy systems, as it allows
for unlocking energy efficiency and flexibility potentials. However, energy management systems
need to be applied at large scales to realize the desired effect, which clearly requires minimization
of costs for setup and operation. We promote an approach to split the complex optimization
algorithms employed by energy management systems into standardized components, which can be
provided as a service with marginal costs at scale. This work introduces a framework as well as a
community concept to support the efficient implementation and operation of such services. Thus,
this work is a significant step towards the large-scale application of energy management systems
aiding a carbon-neutral future.

© The Authors(s), 2020. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.

ar
X

iv
:2

40
2.

15
23

0v
2

 [
cs

.S
E

]
 1

8
M

ar
 2

02
5

https://orcid.org/0009-0004-6249-930X
https://orcid.org/0000-0002-9115-670X
https://orcid.org/0009-0001-2335-7278
https://orcid.org/0009-0009-9473-186X
https://orcid.org/0000-0001-9100-5496
https://orcid.org/0000-0002-3572-9083
https://orcid.org/0000-0002-4295-7631
http:// creativecommons.org/licenses/by/4.0/

2 David Wölfle et al.

1. Introduction
Global scale efforts are required to mitigate the most severe consequences of climate
change, including a significant increase in the energy efficiency of consumers as well
as the decarbonization of energy supply [IPCC, 2022]. The vast utilization of renewable
energy sources required for the latter will additionally likely induce an increased demand
for energy flexibility by consumers [Alizadeh et al., 2016, Kondziella and Bruckner, 2016,
Papaefthymiou and Dragoon, 2016]. EMSs, in a sense of software computing optimized oper-
ational schedules and executing these on devices and systems, have been demonstrated to
be capable of reducing energy demand, lowering CO2 emissions and/or unlocking flexibility
[Schibuola et al., 2015, Oldewurtel et al., 2012, Ding et al., 2019, Salpakari and Lund, 2016,
Chen et al., 2019]. However, in order to achieve the desperately needed global impact energy
management solutions will be required at scale, like e.g. applied to thousands of buildings.

Economic viability is certainly a key factor for the widespread adoption of EMSs.
Forecasting and optimization algorithms are essential parts of EMSs (see Section 2),
but have traditionally been developed for a single specific target (e.g. for one partic-
ular building) [Wölfle et al., 2020], like in [Schibuola et al., 2015, Oldewurtel et al., 2012,
Ding et al., 2019, Salpakari and Lund, 2016, Chen et al., 2019] or the publications reviewed by
[Shaikh et al., 2014]. This approach is problematic as it has been shown that the development
costs of target-specific forecasting and optimization algorithms are higher than the monetary
savings, even for medium-sized commercial buildings [Gwerder et al., 2013].

This paper aims at supporting the widespread adoption of EMSs by enabling the utiliza-
tion of forecasting and optimization algorithms for energy management applications at large
scales. Our approach, as discussed in Section 2 in detail, is to replace target-specific forecasting
and optimization algorithms (which are locally deployed as part of the EMS instances) with
generic forecasting and optimization algorithms that are centrally provided as web services, in
order to reduce development and operation costs of EMSs. In Section 3 we extensively analyze
the current state of the art and find that the concept of providing forecasting and optimiza-
tion algorithms as web services is already well established, especially in commercial solutions
provided by international corporations. Furthermore, it is relevant to note that data-driven
algorithms, i.e. forecasting and optimization approaches generally suitable for utilization in
larger scales of EMSs controlling heterogeneous systems, have been frequently proposed in
academia [Anand et al., 2023, Chen et al., 2019, Ding et al., 2019, Meisenbacher et al., 2023,
Xuereb Conti et al., 2023]. However, it seems that currently no software framework exists that
supports the implementation and operation of such services, which seems to be a major barrier
for bringing these new and innovative forecasting and optimization algorithms into practical
application by EMSs.

The present paper addresses the aforementioned shortcoming by contributing a framework
that allows the provisioning of forecasting or optimization code as a web service. To that end,
we begin by carrying out an extensive analysis to specify requirements (Section 4). Based on
this, we present a sophisticated design concept that satisfies these requirements (Section 5) and
finally derive an implementation of our concept (Section 6), which we release as a free and open
source repository alongside this publication. Our second contribution is the presentation of our
concept for the Open Energy Services community (Section 7), a group that is dedicated to the
maintenance of the framework, but also to the development and operation of forecasting and
optimization services. Finally, Section 8 is devoted to demonstrating that our contributions, i.e.
framework and community concept, are useful for facilitating the development and operation
of forecasting and optimization services for energy management applications.

Data-Centric Engineering 3

Local EMS

User

interacts with

Graphical User Interface

EMS Core

Physical Devices

Hardware Abstraction Layer

Device 1 Device n...

Scheduler

Controller

Interfaces

Database

Forecasting

Optimization

Device 2

Monitoring

Analysis

Device 3

Figure 1. Typical high-level architecture of an EMS.

2. Nomenclature
As a first step to define the context this work is set in, we begin with inspecting the
typical Energy Management System (EMS) architecture1. Concrete proposals for the latter
have been provided by [Dawson-Haggerty et al., 2013, Lee et al., 2016, Mauser et al., 2015,
Pipattanasomporn et al., 2015]. [Han et al., 2023] contains a review of architectures of EMS
for residential buildings. While these papers generally show no consensus about the internal
structures of EMS, it is nevertheless easily possible to map the respective suggested architec-
tures to the convention introduced below and summarized in Figure 1. The latter also holds
for the architecture of OpenEMS2, the only EMS the authors are aware of that is developed
as an open source project by a consortium of commercial institutions.

In order to discuss the internal structures of EMSs in greater detail, we consider a running
example of a commercial building equipped with a Photovoltaic (PV) and Battery Storage
System (BSS) as physical devices as well as an EMS, intended to optimize the operation of the
latter, that is executed on a computing device inside the building. As the facility managers
of the building are responsible for its correct operation, they interact with the EMS, e.g. to
monitor the operation or to adjust setpoints. However, other residents of the building may

1It is worth noting that many commercial offerings of EMSs are regularly reduced to an implementation of ISO
50001, which defines energy management applications with a focus on monitoring and analysis. Such EMSs will usually
not contain forecasting and optimization components. Thus, they are not referenced here as they are not covered by
the scope of this work. However, the service approach promoted in this work might in fact be a relevant option for
unlocking to potential of forecasting and optimization algorithms for such EMSs.

2https://openems.github.io/openems.io/openems/latest/edge/architecture.html

https://openems.github.io/openems.io/openems/latest/edge/architecture.html

4 David Wölfle et al.

interact with the EMS too, e.g. to specify their personal demands which the system should
consider. Thus, all persons interacting with the EMS are the users of it. The EMS has been
developed and is supported by a specialized institution, the EMS developer.

The EMS itself is essentially a piece of software consisting of three major parts:

1. A Graphical User Interface (GUI) which the users interact with.
2. A Hardware Abstraction Layer (HAL) connecting the EMS to the physical devices.
3. A component holding the essential management functionality, which we will refer to in

this work as EMS core.

Returning to our running example, we can perceive the functionality of the EMS core part to
contain:

• Optimization: Computes optimized schedules for the controllable devices in order to satisfy
the goals provided by the users. E.g. the facility manager could configure the EMS such
that the BSS is used to take advantage of flexible electricity tariffs.

• Forecasting : Computes forecasts that the optimization algorithm requires as input. In the
present example, the optimization could require predictions of the future development of
the energy price, the electric load, and the power generation of the PV system.

• Scheduler : Invokes the forecasting and optimization algorithms periodically or at certain
events. In the present example, the scheduler might trigger the computation of an
optimized schedule for the BSS every 15 minutes by first invoking the forecasting
algorithms and then forwarding the predictions (along with any other required input data)
to the optimization algorithm. The scheduler might additionally fetch data from external
sources, like e.g. a weather forecast as necessary input for a PV power prediction algorithm.

• Controller : Ensures that the user and hardware constraints are satisfied by the EMS. For
example, the facility manager could wish to enforce that the BSS is not discharged below
20% in order to expand the lifetime of the device. The controller might additionally
contain simple rules that define a sane default strategy in case that the optimization
algorithm does not work as intended.

• Database: Stores the data required for the operation of the EMS (incl. GUI), like, for
example, measurements emitted by the physical devices.

• Interfaces: Implements the connectivity to the GUI and the HAL. Might additionally
contain interfaces for external applications or a message broker for internal communication
between parts of EMS core.

• Monitoring : Continuously oversees the system influenced by the EMS and emits alerts in
case of malfunctioning. The monitoring system could, for example, send an email to the
facility manager if the communication with devices has been lost or these need maintenance.

• Analysis: Aggregates and computes metrics relevant for the users of the EMS, for example
statistics about the energy usage pattern.

In contrast to the usual EMS architecture pattern introduced above, this work promotes an
approach in which the forecasting and optimization algorithms are not directly integrated into
the EMS, but provided as services, as summarized in Figure 2. It is worth noting that, although
forecasting and/or optimization algorithms are utilized as a service, the correct operation of
the EMS remains the responsibility of the EMS developer, i.e. by implementing a controller
component (see above) into the EMS.

In the context of this work, a service refers to a web-based program that provides a function-
ality required for energy management applications via a standardized interface. The intention
of providing forecasting and optimization algorithms as services is to make these algorithms
available to a larger number of EMSs in order to reduce development and maintenance costs
of the individual systems. The separation of forecasting and optimization algorithms from the

Data-Centric Engineering 5

Energy Services in Cloud

Forecasting Service 1

User

Local EMS

interacts with

Graphical User Interface

Physical Devices

Hardware Abstraction Layer

Device 1 Device n...

Forecasting
Code 1

Service
Framework

Forecasting Service i

Forecasting
Code i

Service
Framework

Optimization Service 1

Optimization
Code 1

Service
Framework

Optimization Service j

...

Optimization
Code j

Service
Framework

... EMS Core

Scheduler

Controller

Interfaces

Database

Monitoring Analysis

Figure 2. High-level architecture of an EMS utilizing selected forecasting and optimization
services.

EMS software implies the need to extend the former with interfaces in order to allow the inter-
action between the services and the EMSs. Furthermore, the intended usage of the forecasting
and optimization algorithms by a large number of EMSs makes it necessary to consider how
these can be executed in a scalable way. For example, one should consider that the imple-
mentation of a forecasting or optimization algorithm, henceforth referred to as the forecasting
or optimization code, will generally not contain an Application Programming Interface (API)
suitable for web-based clients or functionality to concurrently handle thousands of requests.
Thus, it is necessary to extend the forecasting or optimization code, with all the functionality
required for an operation as a service. However, it is obviously not very effective to develop and
implement this extension for every service from scratch, as it will likely be very similar for all
services. Hence, the utilization of a service framework, i.e. a software that drastically reduces
the necessary effort for developing forecasting and optimization services, by providing the soft-
ware parts that are generic for all services. In fact, a large fraction of this work is devoted to
the design and implementation of such a service framework.

It should be noted that this service framework is by no means limited to services for fore-
casting and optimization: Consider e.g. a heuristic that detects the occupancy in a building
from limited information, or an algorithm (like in [De Jongh et al., 2022]) that determines the
current state of the electricity grid. The provisioning of such algorithms as services is clearly

6 David Wölfle et al.

Algorithm
Developer

develops and
implements

Forecasting or
Optimization Code Functional Service

Service
Developer

is used by derives

Service Framework

Operational Service EMS Software

Service
Provider

is used by deploys and
maintains

EMS
Developer

develops and
maintains

is integrated
by

is used by is used by

Figure 3. Stakeholders involved in the development process of forecasting or optimization ser-
vices.

useful in the wider sense of energy management. Furthermore, by its generic design, the pro-
posed framework is applicable for use cases not related to energy management. Consider, for
example, the flood prediction approach proposed by [Hofmeister et al., 2024], which could be
provided as a service, too. However, in the following, for simplicity and readability, we refer to
forecasting and optimization or to the retrieval of a forecast or optimized schedule. This is not
meant to exclude other, not strictly covered, but related algorithms.

Finally, it is necessary to regard the development process of a forecasting and optimiza-
tion service as well as the corresponding stakeholders that are involved. The first step is the
development and implementation of the forecasting or optimization algorithm by the algorithm
developer. This step might have been finished far before the development of a service has been
decided and we thus use the terminology of an existing forecasting or optimization code, in
order to illustrate that no considerations about a potential utilization of the code in a service
need to be taken during the development. The subsequent step of the development process is
carried out by the service developer, who wraps the existing forecasting or optimization code
with the service framework in order to derive a functional service. The latter is then operated
by the service provider to make it usable for EMSs. It is worth noting that the service frame-
work contains an operation concept (see Section 5.4) which supports service providers with
their tasks. The integration of the service into the EMS is carried out by the EMS developer
who additionally needs to negotiate with the service provider with respect to the conditions
under which the service can be used, including which data the EMS must provide to the ser-
vice. The job of installation and maintenance of the EMS is carried out by the EMS provider,
likely in close cooperation with the final user of the system.

Returning to our running example, one might consider that the algorithm developer is an
academic researcher who engineered the optimization algorithm for the BSS within a project
funded by an IT company that specializes in selling forecasting and optimization services.
The latter might act in the roles of the service developer and service provider, having several
customers that specialized in designing and provisioning of EMS. The facility manager might
then have ordered an EMS for the building they supervise and therefore become the user of
the EMS, thus also indirectly the user of the integrated services.

Finally, it is worth mentioning that we do consider, but not demand, that the aforementioned
roles are distributed over institutions. Nevertheless, it appears not unlikely in academic research

Data-Centric Engineering 7

projects that all roles are taken by a single institution, e.g. a research group, who might develop
algorithms as well as an EMS and test it in their own research facilities.

3. Related Work
This section analyses approaches related to ours from academia and industry.

3.1. Frameworks for Service Development
Most closely related to the present publication is [Maree and Bagle, 2022], in which a service-
based approach to create digital twins of buildings is presented. Similar to our work, the paper
strives to develop a framework. The main difference is that their work is much broader, i.e. the
framework covers not only forecasting and optimization but also data storage, thermal models
of buildings, and how these can be learned from data. Consequently, [Maree and Bagle, 2022] do
not handle the aspect of forecasting and optimization services at a comparable depth as in the
present work. For example, it does not contain any requirements analysis, a detailed discussion
about the technical design and implementation of the services, nor does it provide a systematic
approach to derive new forecasting or optimization services from existing code. Furthermore,
their work does not contain any hint about a potential publication of the corresponding source
code. Thus we conclude that their work, unlike ours, is not a reasonable basis for deriving
forecasting and optimization services for energy management applications.

On the other hand, larger Machine Learning (ML) frameworks, like e.g. PyTorch3 MLflow4,
provide the functionality to expose an ML model as web service with a Representational State
Transfer (REST) API. However, to the best of our knowledge, there is no solution that sup-
ports triggering the training models from API calls out of the box5, i.e. that allows fitting
system-specific parameters as our framework does. It thus appears that utilizing the framework
developed in the present work is significantly more advantageous for service developers. This is
particularly the case if one considers that our framework has been explicitly designed to min-
imize the necessary effort for the development and operation of forecasting and optimization
services for EMSs at scale.

3.2. Forecasting and Optimization Services
Several publications have been identified, beyond [Maree and Bagle, 2022], that
utilize the concept of forecasting and/or optimization components wrapped into ser-
vices [Galenzowski et al., 2023, Lenk et al., 2020, Hill et al., 2023, Dengler et al., 2023,
Marinakis et al., 2020, Mohamed et al., 2018]. Regarding approaches not documented in aca-
demic publications one should first consider that several providers exist operating web APIs
for the retrieval of weather-related data or forecasts, partly as free or commercial offering,
e.g. Bright Sky6, Open Meteo7, SoDa8, Solcast9 and Forecast.Solar10. The latter two offer
additional services related to forecasting PV power generation. Closely related to the latter is
NIXTLAs TimeGPT11, a commercial service for generic time series forecasting. Finally, it is

3https://pytorch.org/
4https://mlflow.org/docs/latest/models.html
5A detailed discussion why training models via API calls is necessary is provided in Section 4.2.
6https://brightsky.dev/
7https://open-meteo.com/
8https://www.soda-pro.com/
9https://solcast.com/

10https://forecast.solar/
11https://docs.nixtla.io/docs/getting-started-about_timegpt

https://pytorch.org/
https://mlflow.org/docs/latest/models.html
https://brightsky.dev/
https://open-meteo.com/
https://www.soda-pro.com/
https://solcast.com/
https://forecast.solar/
https://docs.nixtla.io/docs/getting-started-about_timegpt

8 David Wölfle et al.

worth mentioning the Building Energy Modeling12 service provided by Schneider Electric as
part of their EcoStruxure platform, more details about the latter in the following section. The
service allows users to learn the thermal energy consumption pattern of buildings from data.

In contrast to our work, none of the publications or services referenced in this section
present a framework for deriving forecasting and optimization services for energy management
applications. Thus, these services are neither in conflict with the present work nor do they
provide any substantial input for the requirements analysis or design concept presented below.
While some of the mentioned offerings could be reasonably utilized by EMSs, the main issue
is that each of these services covers only a fraction of the typically required functionality,
while none provides a generic approach to derive the remaining necessary forecasting and
optimization services. Nevertheless, the pure existence of these publications and services can be
considered as strong advocacy for the general concept of forecasting and optimization services
and, thus, the relevance of the present paper. Furthermore, it is worth noting that the scientific
research underlying the referenced publications would very likely have benefited substantially
from using the framework proposed in the present work.

3.3. Energy Management Systems, Platforms, Communities and Market Places
A relevant platform that has been developed and utilized for years in EU projects is
FIWARE [Cirillo et al., 2019]. FIWARE is a general-purpose IoT Platform [Cirillo et al., 2019]
managed by the FIWARE Foundation [Rodriguez et al., 2018]. It is used in various
use cases, including smart farming [Rodriguez et al., 2018], smart buildings, and smart
grids [Blechmann et al., 2023]. The heart of FIWARE is the so-called context broker, which
receives data from data providers (e.g., sensors), stores the latest information, and provides it
to data consumers (e.g., some service). Aside from the context broker, there are various differ-
ent solutions for data processing and storage that can be connected to the broker, as well as
a set of “smart data models” that have been used in different applications. With all these, the
FIWARE ecosystem provides many different building blocks that can be used in energy man-
agement. These building blocks, however, are very heterogeneous and generic, as their only
shared foundation is the integration with the context broker and the underlying Next Gen-
eration Service Interface (NGSI). Therefore, FIWARE is less an alternative to the proposed
service framework and more a platform into which derived services could be integrated.

On the other hand, several commercial approaches exist that are similar to our service-based
forecasting and optimization concept. In particular noteworthy are the platform solutions from
Siemens (Building X13), Bosch (NEXOSPACE14) and Schneider Electric (EcoStruxure15). The
latter two appear conceptually similar, i.e. the platforms provide several functionalities for
smart building operation, including energy management, but require that proprietary hardware
(i.e. gateways) must be installed in the building that should be connected to the respective
platform. This is a clear contrast to the Siemens solution, which is advertised with an open
API concept and connectivity to third-party systems, while seemingly offering similar func-
tionality like the other two. No evidence was found that any of the three companies offers a
framework like introduced in this work. However, all three vendors claim that their platform
solutions can be extended by third parties and offer a marketplace for applications that can
be integrated. However, publishing extensions on the marked places must be explicitly granted
by the respective company and is subject to licensing fees. Thus, we conclude that none of the
three platforms is indeed a viable alternative to this work as neither empowers third parties to
develop and operate forecasting and optimization services for energy management applications

12https://exchange.se.com/develop/products/38969/building-energy-modeling-api
13https://xcelerator.siemens.com/global/en/products/buildings/building-x.html
14https://www.boschbuildingsolutions.com/xc/en/digital-services/
15https://www.se.com/ww/en/work/campaign/innovation/platform.jsp

https://exchange.se.com/develop/products/38969/building-energy-modeling-api
https://xcelerator.siemens.com/global/en/products/buildings/building-x.html
https://www.boschbuildingsolutions.com/xc/en/digital-services/
https://www.se.com/ww/en/work/campaign/innovation/platform.jsp

Data-Centric Engineering 9

which are independent of the respective vendor. Finally, it is worth mentioning that Schneider
Electric and Bosch both offer EMSs for private households, e.g. Bosch Smart Home16 and HEM-
Slogic17. While both of these systems apparently use some form of cloud-based optimization,
there seems to be no possibility to directly interact with these forecasting and optimization ser-
vices or to integrate third party services as an alternative. However, we again perceive that the
existence of the Siemens, Schneider Electric and Bosch solutions, providing cloud services for
smart building operation and energy management, strongly advocates the concept underlying
this work.

Finally, we find it important to discriminate our work from the Open Energy Platform18

as well as from OpenEMS19, two projects well known among scientific researchers. The first
of these is a community effort to establish a collection of tools supporting the work with
and publication of energy-related datasets, with a focus on energy system modeling. This is
clearly disjoint from our goal to provide tooling for the implementation of forecasting and
optimization services for energy management applications. On the other hand, OpenEMS is a
fully functional, open source, and free to use EMS. While it does, in fact, contain a limited
number of forecasting and optimization algorithms, providing these is not the essential task of
the software. The latter is particularly true as OpenEMS is usually operated on edge devices
with little compute power, which limits the applicability of modern ML-based forecasting
and optimization methods. However, it is absolutely reasonable to extend OpenEMS with an
Energy Service Generics (ESG) compatible client, to allow the integration of forecasting and
optimization services derived with our framework, and we plan to demonstrate this in future
work.

4. Requirements Analysis
Following the common procedure in software engineering, we begin with a systematic approach
to assess the requirements that should be fulfilled by our service framework. IEEE defines
a requirement as ’A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other formally imposed
documents’ [IEEE, 2002]. It is worth noting that the traditional requirements engineering
process, as defined in [Pohl, 1996], is tailored for the utilization in customer-specific soft-
ware development. In contrast, this work aims at developing a framework for a broad
range of potential service developers, from academia and industry alike. We thus employ
a simple two-step process inspired from research on market-driven requirements engineer-
ing [Alves et al., 2006, Regnell and Brinkkemper, 2005]. Hereby, the first step is an analysis
of application areas. To this end, typical applications of EMSs in three different areas are
described in Section 4.1. Building upon this information, the requirements are documented in
a semi-structured natural language specification [Washizaki, 2024], using the following pattern:
’An <actor> must/should be able to <requirement>’. Using this pattern, the requirements are
documented in a transparent and consistent way that enables easy requirements verification.
Furthermore, we categorize the requirements into functional (Section 4.2) and non-functional
(Section 4.3). Here we follow Glinz’s definition [Glinz, 2007], where functional requirements
describe a function a system must be able to perform, including component, behavioral, and
functional aspects. Quality and performance aspects, like throughput, reliability, and security,
as well as constraining aspects, like physical or legal aspects, are summarized in non-functional
requirements. While the derivation of these requirements is generally based on the analysis

16https://www.bosch-smarthome.com/uk/en/
17https://shop.se.com/de/de/catalog/category/view/s/hemslogic/id/3252/
18https://openenergyplatform.org/
19https://openems.io/

https://www.bosch-smarthome.com/uk/en/
https://shop.se.com/de/de/catalog/category/view/s/hemslogic/id/3252/
https://openenergyplatform.org/
https://openems.io/

10 David Wölfle et al.

provided in the following section, we are also guided by our broad experience in numerous
projects in cooperation with relevant industry partners, where prototypical EMSs for various
scenarios have been developed and evaluated in large field tests, like e.g. MeRegio20, C/sells21,
flexQgrid22, and Smart East23.

4.1. Analysis of Application Areas
Basis for the requirement elicitation process is an analysis of application areas, with which we
aim to provide more context and information on the environment, in addition to Section 2.
Domain knowledge and an understanding of the application’s context is important for the qual-
ity of the requirements [Alebrahim et al., 2014, Antonelli et al., 2012]. Therefore, to aid in the
formulation of requirements, this analysis defines the relevant application areas or domains
[Loucopoulos and Champion, 1988], and is carried out by compiling typical applications for
EMSs, as well as their characteristics and distinguishing factors. For this purpose, we consider
the three application areas private households, commercial buildings, as well as districts and
areas separately, and concisely illustrate the individual goals and system specifics. The latter,
motivated by ISO 25010 [ISO/IEC, 2023], is achieved by pointing out functional, efficiency,
compatibility, interaction, reliability and safety, security, as well as maintainability and flex-
ibility aspects. Table 1 summarizes key differences and similarities between the application
areas.

In private households, nearly two-thirds of the energy demand are used for space heat-
ing. They account for 27 % of the final energy demand in the EU, of which only 25 % is
electricity [Eurostat, 2023], but this is expected to rise due to the ongoing electrification of
heat and transport due to electric vehicles and heat pumps [Ruhnau et al., 2019]. Electricity
generation by local PV plants is also growing rapidly, leading to an increase in households
that produce parts of their electricity consumption themselves (often called "prosumers")
[Sovacool et al., 2022, Kotilainen, 2019]. The usual goal is to optimize local PV usage and min-
imize the electricity needed from the public grid by using flexible devices, such as batteries, and
shifting flexible electricity demand. In order to do this, private prosumer households often use
EMSs to control their batteries, heat pumps, and/or charging processes [Zafar et al., 2020].
They can work rule-based [Berkes and Keshav, 2024], which in simple cases also produces
optimal results, for instance when there is a flat electricity tariff by storing all excess PV pro-
duction and discharging whenever there is a deficit, or use all sorts of optimization algorithms,
including mixed integer linear programming, genetic algorithms, particle swarm optimization
and more [Srilakshmi and Singh, 2022, Henggeler Antunes et al., 2022]. Home EMSs used in
private households can either be provided as cloud services, e.g., by electricity providers, or
operated locally on an edge device, e.g., a Raspberry Pi. In the latter option, EMSs can be
operated based on open-source smart home systems like Home Assistant24 or OpenHAB25

which can be installed and used by everyone, but may be limited in terms of computing power.
Hardware interoperability on the building level is a challenging task, due to a lack of stan-
dards and many vendor specific solutions. The provided user interfaces vary depending on the
intended user group. Solutions like OpenHAB allow, for instance, the creation of own control
rules, while others provide only simple visualizations. All functions should be provided without
interruption, to ensure user comfort, but usually outages would only lead to loss of comfort for
the affected household(s). Systems should be designed to avoid damage to devices and users.

20https://meregio.forschung.kit.edu/english/24.php
21https://www.wirsinteg.de/csells
22https://flexqgrid.de/english/
23https://smart-east-ka.de/
24https://www.home-assistant.io/
25https://www.openhab.org/

https://meregio.forschung.kit.edu/english/24.php
https://www.wirsinteg.de/csells
https://flexqgrid.de/english/
https://smart-east-ka.de/
https://www.home-assistant.io/
https://www.openhab.org/

Data-Centric Engineering 11

Especially in private households, the limited computing power of local EMSs makes it favor-
able to outsource optimization, load prediction, or PV forecast to a cloud service. However, a
strong argument for using local systems is the high level of privacy protection, as no data on
electricity consumption, which can be used to draw conclusions about residents’ behavior, has
to be shared with cloud providers [Boiko et al., 2024]. Maintainability and (software) flexibility
are crucial for EMS developers and providers, especially for offering their customers continued
safe and secure systems and allowing support for more and new hardware.

In commercial buildings, energy management algorithms like e.g. proposed by
[Chen et al., 2019, Ding et al., 2019, Oldewurtel et al., 2012], typically address the optimiza-
tion of the Heating, Ventilation and Air Conditioning (HVAC) system, controlled centrally
or for rooms individually. Usually, these buildings are equipped with a Building Automation
System (BAS) on which a Rule Based Control (RBC) strategy is implemented. The latter is
replaced with an optimization-based approach given an EMS is installed. The efficiency, both
from a software and energy perspective, varies with the employed algorithms and depends on
the local systems [Al-Ghaili et al., 2021]. Compatibility, like in the residential case, can be a
challenge, however, with larger facilities and larger associated investments, customized inte-
grations are more reasonable than in the residential case. In commercial buildings, the correct
operation can be of critical importance for the organization utilizing the building. Therefore, the
building optimization system might have to be executed on-premise to prevent outages caused
by internet failures. Using cloud-based energy management systems in commercial buildings
can also come with challenges regarding privacy and security [Anthi et al., 2018]. Commercial
buildings might be utilized by organizations that are privacy-sensitive and thus do not permit
data to be stored in the cloud. Other organizations, however, might be rather price-sensitive
and hence prefer to use an optimization algorithm provided as cloud service while configuring
the BAS to fall back to RBC in case of connection issues. From a maintainer and vendor per-
spective, again, maintenance and flexibility are important for the operation of existing systems
and the further development of the product.

Districts and areas differ from those categories due to their size and, most importantly, the
involvement of energy grids. One major reason to conduct energy management on the level
of facilities, districts, and even on a regional scale is grid operation. With increasing decen-
tralized generation, especially from renewable energy sources, and increasing demands from
electrification, the need for monitoring the utilization of the grid and its power quality (see
[Chawda et al., 2020]) and actively influencing energy flows to prevent or resolve undesired
situations is rising (e.g., [Volk et al., 2017]). Energy management on an area level, therefore,
often considers the associated energy grids, especially in the case of micro-grids. Another rea-
son for area-level energy management is the optimal, e.g., cost-minimal, operation of all the
generators, storage systems, and flexible loads in the area (e.g., [Roccotelli et al., 2022]). Con-
trol of the different flexible devices and/or buildings in the area can be achieved with more
or less direct mechanisms, ranging from direct device access to indirect, highly aggregated
control signals [Förderer et al., 2022]. The practical implementation and derived qualities like
efficiency, reliability, and safety, depend on the selected orchestration mechanism, local regu-
lation and the characteristics of the area in question, e.g., who owns the devices and energy
grids and whether there are any fees for using the public grid in a given scenario. Since, in a
region, there can be any number of commercial and residential buildings combined, the interop-
erability challenge is amplified manifold. Standardized interfaces, models, and EMSs for each
building can alleviate this challenge [Khalid, 2024]. Users may be provided with user inter-
faces for checking the current regional status and history, or making inputs, such as electric
vehicle charging settings. In districts and areas, privacy-sensitive data, e.g. of many house-
holds, may need to be protected, which can be done using data aggregation due to the larger
scale [Kursawe et al., 2011, Varenhorst et al., 2024, Langer et al., 2013]. Here, a higher level
of aggregation and abstraction is additionally beneficial to keep the amount of data that has

12 David Wölfle et al.

Table 1. Comparison of three areas in which EMSs are used.
Private Households Commercial Build-

ings
Districts and Areas

Scale Small Medium Large
Exemplary
applications

Space heating, pro-
sumers (PV), heat
pumps, electric
vehicles

HVAC systems,
optionally PV and
electric vehicle
charging stations

Buildings and energy
grids, especially elec-
trical distribution
grids

Optimization
goals

Maximize self-
consumption,
minimize energy
demand from the grid
and optimize with
respect to electricity
prices

Optimization of HVAC
systems to reduce
energy demand while
maintaining comfort

Cost-minimal opera-
tion of all generators
and flexible loads and
storages in the area

Information
used for
optimization

Building models, pre-
diction of inflexible
electricity demand
and thermal energy
demand, weather fore-
casts and local PV
supply

Weather forecast and
occupancy predictions,
if sensing devices avail-
able

Non-standardized
models due to higher
level of aggrega-
tion and abstraction,
current systems
state, forecasting of
energy-related time
series

Implementa-
tion

On-premise with local
electricity-saving edge
devices, or cloud-based
services

On-premise, to pre-
vent outages, based
on existing BAS with
RBC strategy

Dedicated server due
to scale, can be on-
premise for factories

Privacy Privacy-sensitive data,
e.g., residents’ behav-
ior

Privacy-sensitive data
possible – trade-
off between privacy
and price with cloud
storage

Data aggregation can
be used to protect
privacy-sensitive infor-
mation

to be managed and the computation times on an acceptable level, also resulting in a need for
different models. Aggregation is especially important on higher grid and system levels. Smart
energy-optimized areas may, for instance, aggregate their flexibility on the feeder level (e.g.,
[Volk et al., 2017]). In such a scenario, control signals need to be disaggregated for their imple-
mentation upon reception. Reliable and safe operation are especially important on the regional
level, as faults may leave many buildings without energy. For achieving reliable and safe oper-
ation, maintainability and flexibility in software are especially helpful on this level, compared
to the other two.

From a general perspective, the basic building blocks needed for energy management in all
three application areas are very similar, that is, functionality for determining and assessing the
current systems state, forecasting of energy-related time series, optimization of load schedules
or similar control signals, and controllers implementing the schedules. The implementation,
however, may vary due to the different properties and specific demands present in the appli-
cation areas. In all three areas, privacy concerns need to be taken into account due to the
presence of privacy-sensitive information.

Data-Centric Engineering 13

4.2. Functional Requirements
With the analysis of application areas presented in the previous section and the described
typical energy management applications in mind, we now derive functional requirements.

The first requirement directly results from the service and stakeholder concept discussed in
Section 2. It is:
FR01: A service developer must be able to derive a functional service with the
service framework from existing forecasting or optimization code.

Here, the intention of the service provider clearly is to allow EMSs to utilize the existing
forecasting or optimization algorithm by interacting with the web API of the service26. Hence
the second and third requirements are:
FR02: An EMS must be able to interact with the service over a web API provided
by the service.
FR03: An EMS must be able to request a forecast or optimized schedule utilizing
the API of the service.

The forecasting or optimization algorithms wrapped by the service framework will usually
require some form of input data. Considering a PV power generation forecast as example,
this could be the global position and time of the target system. Furthermore, the data format
returned by a forecasting or optimization algorithm will obviously be specific to it and should
contain all the information the algorithm needs for processing the expected result. The latter
includes constraints that should be obeyed by optimization algorithms. Therefore, the fourth
requirement is:
FR04: A service developer must be able to specify the format of the input and
output data exchanged due to an EMS request for a forecast or optimized schedule
from the service API.

Some services may implement system-specific parameters that must be fitted utilizing his-
torical measurements of the system subject to forecast or optimization as a prerequisite for
high-quality results. Note that the algorithm for fitting the system-specific parameters is con-
sidered to be a part of the existing forecasting or optimization code. As services should be
usable by a large number of EMSs, this fitting process should be manageable via the service
API27. Returning to the PV power generation forecast example, one could conceive that the
forecasting code contains a small neural network that has been trained using the power genera-
tion of several PV systems, thus representing an average system. However, if power generation
measurements of a specific PV system are available, it is possible to adapt (fit) the weights and
bias terms of the neural network (system-specific parameters) such that the prediction error is
minimized for the specific system. The fitting procedure is part of the service and the fitting
process can be initiated by calling the respective API endpoint with the required input data,
which would be a time series of historic power generation data for the PV power generation
forecast example. Furthermore, we need to consider privacy-sensitive users, i.e. users that do
not accept any of their data to be stored in a cloud database, which implies that it must be
possible for EMSs to store the fitted parameters locally28. Finally, we need to consider EMSs

26Note that we formulate the remaining requirements about the derived service to improve readability. Later, in
particular in Section 5.2, we discuss that the requirements need to be fulfilled by the service framework.

27Note that web services exposing machine learning models usually implement a different approach, i.e. that the
training will be carried out before deployment and hence that the parameters of the model are identical for all clients. In
order to emphasize this difference, we explicitly refer to fitting system-specific parameters instead of training models.
Furthermore, it is worth noting that our proposed approach will also work for foundation model based forecasting
approaches, like e.g. TimeGPT introduced in Section 3.2. While such algorithms may or may not need to fit system-
specific parameters for good performance, exposing them as services is nevertheless reasonable to enable a widespread
application in EMSs.

28One could argue that a user who opposes storing data in a cloud database will likely not want to use an EMS
that utilizes forecasting or optimization services operated by an external service provider at all. On the other hand,
service providers might guarantee that data exchanged with a service is deleted immediately after processing, which
seems like a fair compromise between privacy and cost efficiency.

14 David Wölfle et al.

that are not capable of reliably storing historic recordings of measurements or fitted parame-
ters on-premise, e.g. very likely a large fraction of EMSs operating in private households. While
this seems like a major difference at first glance, it turns out that this scenario imposes no
additional requirements for the service. The discussion behind this finding is out of scope at
this point but can be found in Appendix A. The resulting requirements are thus:
FR05: An EMS must be able to fit system-specific parameters of a service utiliz-
ing its API.
FR06: A service developer must be able to specify the format of the input and
output data exchanged while an EMS interacts with the API of a service to fit the
system-specific parameters.
FR07: An EMS must have the option to store fitted system-specific parameters
locally.

API calls made by an EMS may take a significant amount of time before the result becomes
available. Consider e.g. the service providing PV power generation forecasts used as a running
example for which fitting the system-specific parameters involves training a neural network
that might take several minutes to hours. On the other hand, computing forecasts or optimized
schedules might require a decent amount of time too, e.g. if computing an optimized schedule
for a larger building involves solving a complex linear program. As such response times are
different from typical values of web services, we formulate it as an additional requirement:
FR08: An EMS must be able to make calls to the API of the service which may
take several hours to compute.

Finally, it is well known that documentation is important for the widespread adoption of
APIs [Hunter, 2017, Jin et al., 2018]. Here documentation refers to the description of the func-
tionality of a service, in particular its API and the data format for interactions with the latter.
Furthermore, development efforts can be reduced by automatically generating the documen-
tation from the corresponding source code, which is additionally beneficial as it prevents that
changes in the code are not reflected in the documentation. The resulting final functional
requirement is thus:
FR09: A service developer should be able to automatically generate a documen-
tation for the API of a service.

4.3. Non-Functional Requirements
Extending the content above, this section presents non-functional requirements for the service
framework. To this end, we first consider the envisioned target state that professional service
providers operate services which are utilized by a large number of EMSs. Thus, the availability
of these services is very likely of critical importance for the intended functioning of a large
number of EMSs. This implies that service providers need to apply state-of-the-art computing
cluster techniques for operation. Furthermore, the data exchanged between EMS and services
may contain sensitive information and should thus be encrypted29, especially as a large share of
EMSs will likely communicate with services over the public internet. Finally, operating services
may require significant compute resources and energy. A service provider may, hence, wish to
restrict access to services to certain EMSs. This leads to the following requirements:
NFR01: A service provider must be able to operate services with high availability
and scalability.
NFR02: An EMS must be able to communicate with the service over an encrypted
connection.

29Note that it is additionally reasonable to demand that the data exchanged between EMS and service cannot be
altered in transit. However, we do not add this point as a separate requirement as it is automatically fulfilled if the
communication is securely end-to-end encrypted, e.g. with HTTPS

Data-Centric Engineering 15

NFR03: A service provider must be able to restrict access to a service to authorized
EMSs.

As the correct functioning of the proposed service framework is substantial for the stable
operation of the derived services, it becomes clear that service developers and providers must
be convinced that the framework is implemented correctly to adopt it. Furthermore, service
providers will likely not utilize the framework, if no reasonable maintenance concept exists,
which suggests that future problems in the framework will be addressed and solved quickly.
NFR04: A service developer/provider should be able to validate the correct imple-
mentation of the service framework.
NFR05: A service developer/provider should be able to verify that the service
framework is actively maintained.

Beyond the commercial aspect, an important intended application of the service framework
is to empower academic researchers to derive functional services from existing forecasting or
optimization code. For this, one needs to consider the limited resources typical for academic
research, which implies that the task of deriving a service should require minimal effort30.
Furthermore, it should be regarded that some service developers might not have a strong
expertise in applied informatics but should still be able to utilize the proposed framework. An
example to illustrate this demand could be a project with public funding dedicated to energy
management in private households carried out by a consortium of research groups. In such a
case, it may appear beneficial to integrate a research group dedicated to energy meteorology to
develop a forecast service for PV power generation without demanding that this group cares
about the operation and implementation details of the service. This leads to the following
requirements:
NFR06: A service developer should be able to derive a service with minimal effort
from an existing forecasting or optimization algorithm.
NFR07: A service provider should be able to operate a service without requiring
expert knowledge about IT infrastructure.

A service operating for a longer time may need continuous development work by both service
developer and provider, e.g. in order to maintain or even improve performance and usability.
Such efforts could include breaking changes, like e.g. an adaption of the data format which is
not backward compatible. In order to give EMS developers time to adjust to those changes, it
is common to operate an old and a new version in parallel. However, this implies that the EMS
developer must be able to select which version of a service should be utilized, thus leading to
the following requirement:
NFR08: An EMS developer must be able to specify which version of a service
should be utilized.

While deriving FR09 above, we have argued that documentation is important for the adop-
tion of APIs by EMS developers. However, beyond the pure existence of a documentation, it
appears reasonable to demand that the latter should allow EMS developers to rapidly compre-
hend the API of a service. Furthermore, the main intention of a EMS developer reading the
documentation is likely to implement a client in order to interact with the API of a service.
For this, we demand minimal effort of implementation again, assuming it will likely support
widespread adoption of the corresponding service. Hence, our final two requirements are:
NFR09: An EMS developer should be able to quickly understand the API of a
service by utilizing the documentation.
NFR10: An EMS developer should be able to implement a client to interact with
the API of a service with minimal effort.

30This is obviously beneficial for service providers with a commercial background too.

16 David Wölfle et al.

We are convinced that the requirements derived in the present and previous section are
a solid foundation for deriving a framework for provisioning forecasting and optimization
algorithms as web services for EMSs, and demonstrate this suitability below.

5. Design Concept
Based on the requirements discussed above, we introduce the design concept of our proposed
service framework in this section. To this end, we first present the API design, in particular as
providing an API for forecasting and optimization code is the core functionality of our proposed
solution. Based on the API design, we proceed to describe the internal operation of a service
derived from the framework and finally conclude this section with a discussion about service
operation.

5.1. API Design
As a first step, it is necessary to choose the paradigm on which the API of our proposed
service framework should be based. We consider well-established approaches for web-based
APIs (FR02). These are REST [Fielding, 2000], Remote Procedure Call (RPC) (in particular
gRPC31) as well as GraphQL32. As all three candidates are generally suited to satisfy the
functional requirements we focus on the non-functional requirements in order to select the best
suited paradigm. The relevant requirements are understandability (NFR09) as well as ease
of client implementation (NFR10). It is generally perceived that REST is the most favorable
approach regarding these demands [Hunter, 2017, Jin et al., 2018], which is therefore selected.

As a next step, we define the functionality of the API that is provided by the service
framework. The selection of REST implies that all communication between client and ser-
vice will use the Hypertext Transfer Protocol (HTTP) and that the functionality must be
mapped to Uniform Resource Locators (URLs). It should be noted that we will only note
down the relative part of URLs for the sake of brevity and to highlight that the domain is
not relevant for the structure of the API, i.e. we use /endpoint1/ instead of the full nota-
tion https://some-service.example.com/endpoint1/. The selection of REST furthermore
implies that we need to define which HTTP method (like e.g. GET, POST, PUT, or DELETE)
must be used in order to receive a desired outcome while interacting with a specific URL. We
will henceforth refer to the combination of HTTP method and (relative) URL as API method.
Further introduction about web-based communication over HTTP can be found in the usual
introductory texts or as a short summary in [Jin et al., 2018].

FR03 dictates that EMSs must be able to retrieve a forecast or optimized schedule from a
service. Furthermore, we need to consider that a service may take minutes or even hours to
compute the result (FR08). As especially the latter is far beyond typical timeouts of HTTP
servers33 it is infeasible to directly return the computation result. Instead, we define three API
methods to overcome this issue:
POST /{version}/request/
GET /{version}/request/{task_ID}/status/
GET /{version}/request/{task_ID}/result/
The intended interaction of an EMS with these API methods is as follows:

1. The EMS issues a POST call to the /{version}/request/ endpoint containing the
required input data (see FR04). Note that {version} is a placeholder that must be filled
with the desired version of the targeted service, which is required to satisfy NFR08, and

31https://grpc.io/
32https://graphql.org/
33The default timeout of nginx for a read operation is, for example, 60 seconds.

https://grpc.io/
https://graphql.org/

Data-Centric Engineering 17

could e.g. have a value of v2, see the example provided below. The service checks whether
the input data is correct. If that is the case the service starts computing the result in the
background and returns an ID, e.g. 123, associated to this task (more details about the
latter are provided in the following two sections).

2. Using the ID of the request, the EMS should issue calls to the endpoint: GET
/{version}/request/{task_ID}/status/34. Note that {task_ID} is a placeholder too.
Regarding the example above, the endpoint would be /v2/request/123/status/. For
each call, the service will compute and return the status of the computation, that is one
of queued, running, or ready35.

3. Once the service has finished processing the result and a ready status has been observed,
the EMS can issue a GET call to the /{version}/request/{task_ID}/result/ endpoint
to retrieve the output of the computation, i.e. the forecast or optimized schedule.

Additionally, to the ones defined above, it is necessary to specify API methods to allow fitting
system-specific parameters of a service in order to satisfy FR05. As potentially long processing
times (FR08), as well as versioning (NFR08), need to be considered again, it appears reasonable
to take over the concept introduced above and define the respective API methods as:
POST /{version}/fit-parameters/
GET /{version}/fit-parameters/{task_ID}/status/
GET /{version}/fit-parameters/{task_ID}/result/
The intended usage of the /fit-parameters/ endpoints is equivalent to the pattern discussed
for /request/ above.

Finally, and in order to satisfy NFR03, we need to consider authorization, which implies
authentication, to allow service providers to restrict access to specific clients. Following
[Späth, 2023, Saeed and Abdallah, 2022, Kornienko et al., 2021] the currently best practice for
REST APIs is token-based36 authentication, in particular the utilization of JSON Web Tokens
(JWTs). JWTs, as defined in [Jones et al., 2015], are special tokens that can be cryptograph-
ically validated. Regarding the scope of this work, JWTs are issued by a dedicated identity
provider (see Section 5.4) to the client software. The signature of the token allows the service
to check locally37 whether a request of a client should be granted or not. Further details about
the application of JWTs for web security are given in [Saeed and Abdallah, 2022].

5.2. Service Components
The concept described in this section arises from the requirements FR01 and NFR06, i.e. that
it should be possible to derive a functional service from an existing forecasting or optimization
code with minimal effort. Especially the latter (NFR06) imposes that as much functionality as
possible should be realized by the service framework in order to keep the implementation effort
for the service developer low. To this end we define a functional service to consist of several
components that can be grouped into three categories as summarized in Figure 4:

1. Base: Containing the components necessary for executing the code of the service.
2. Service Framework: Containing all components generic to all services.

34Note that this polling mechanism seems a bit inelegant at first glance. However, alternatives have severe downsides
too, e.g. WebHooks imply the need for the EMS to be exposed on the network while WebSockets don’t integrate well
into documentation and tooling of REST APIs. See Chapter 2 in [Jin et al., 2018] for a more detailed discussion.

35Note that we have not added a failed state as ready just implies that the result endpoint can be called. The
information whether the requested computation has succeeded or failed is provided by the HTTP status code returned
while calling the /{version}/request/{task_ID}/result/ endpoint. This is the standard approach for communication
over HTTP.

36A token is considered as a string that is sent with every HTTP request to the webserver (the service in our case),
most commonly in the HTTP header. The token is usually specific for each client and allows the webserver to validate
if the request is permitted or not, e.g. by looking up the permissions associated with the particular token in a database.

37Locally means here that the token can be validated without the lookup operation mentioned in the previous
footnote, which supports scalability.

18 David Wölfle et al.

Fu
nc

tio
na

l S
er

vi
ce

Service
Specific

Service
Framework

Base

Data Model

WorkerAPI

Runtime Environment

Forecasting or
Optimization Code

Figure 4. Components of a service derived with the service framework.

3. Service Specific: Containing all components a service provider must implement to derive
a functional service.

The primary component of the service framework is the API as defined above. Additionally,
we need to consider that computing the result of a request (as well as fitting system-specific
parameters) might take significant time (FR08), while the REST API of the service should
respond immediately. Hence, it is necessary to decouple the API from the interaction with
forecasting or optimization code. Therefore, we introduce the worker, which is a second com-
ponent provided by the service framework that is executed in a dedicated process and that is
responsible for computing the requested results. It is worth noting that this concurrent pro-
cessing is crucially important, as, otherwise, executing a forecasting or optimization code might
block the API from responding to other calls from clients38.

The service specific category contains the actual payload of the service, i.e. the forecasting
or optimization code. Additionally, the requirements FR04 and FR06 need to be considered,
i.e. that service developers must be able to specify the format of the input data for calls to
/request/ and /fit-parameters/ as well as the output format returned by the corresponding
/result/ API methods. We will refer to the part of the implementation that defines these
formats as data model39. At this point, we will not further specify possible characteristics of
the data model as the latter are tightly connected to the implementation of the API. However,
we will proceed discussing this topic in Section 6.2.

5.3. Service Architecture
It was discussed in the previous section (5.2) that a functional service must contain an API
as well as a worker component and that these should be operated in distinct processes for
performance reasons. It should be noted at this point that the service specific components, i.e.
the data model as well as the forecasting or optimization code, are perceived to be parts of the
API and worker components. The service specific components are consequently not explicitly
mentioned in this section to promote readability.

Following from the execution of service components in distinct processes the necessity arises
to establish some form of inter-process communication to allow services to operate. Consider-
ing the simplest case, i.e. a service consisting of two processes, one for the API and one for the
worker, communication between the two could be established quite simply using queues. How-
ever, we need to consider NFR01, i.e. that service providers should be able to operate services

38Decoupling the API from computing results furthermore allows more sophisticated load management, like queuing
tasks until resources for computation are available, while still allowing the API to be responsive to client calls.

39We chose data model to be consistent with the terminology used by the framework employed for implementing
the API component (i.e. FastAPI, see Section 6.2 below) which uses model. However, the latter collides with a potential
model used in the forecasting or optimization code. Hence, we use data model.

Data-Centric Engineering 19

Service

Message Broker

API Process 1

Worker Process 1

Garbage Collector

API Process 2 API Process 3

Worker Process 2 Worker Process 3

Figure 5. Internal architecture of a service with processes of components and communication
between processes.

with high availability and scalability. From the latter follows that services might consist of mul-
tiple instances of API and worker components, while high availability imposes that the service
components might be distributed over several machines. The usual approach in such a scenario,
which is utilized in this work, too, is to leverage a message broker for communication between
components. The resulting communication pattern within a service would be as follows:

• Every valid POST call to a /request/ or /fit-parameters/ endpoint should lead to the
creation of a task, an object carrying the necessary information for computing the result,
by the API. The latter should assign an ID to the task and publish the task on the message
broker to invoke the workers. Finally, the API should return the task ID to the client.

• A worker process should fetch the task from the message broker and start computing the
result by invoking the forecasting or optimization code. Additionally, the worker should
regularly publish status updates on the processing progress on the broker.

• In case of a call to a /status/ endpoint, the API should fetch the latest status information
about the corresponding task from the broker and return this information to the client.

• If a /result/ endpoint is called, the API should fetch the result from the broker and
return the result to the client.

Finally, it must be considered that a result that is fetched from the broker should not be
deleted on the broker immediately. For example, consider that the communication between
client and API might be interrupted, in which case the client will likely retry to fetch the
result. However, in order to prevent unlimitedly growing memory consumption of the message
broker, it is required to operate an additional component, i.e. the garbage collector. The duty
of the latter is to delete the task-related data from the broker that are likely not to be required
anymore.

The resulting internal architecture of a service, including communication channels, is indi-
cated in Figure 5. It should be appreciated that the service architecture introduced above is
strictly designed to support scalability and high availability, in particular, as subsequent calls
from clients are not required to hit the same API process again. That is, it is not required that
a call to the /status/ endpoint will be handled by the same API process that created the
corresponding task, as all task-related information is shared on the broker. Furthermore, it is
possible to scale the number of API as well as worker processes to the actual load induced by
clients.

20 David Wölfle et al.

5.4. Operation Concept
Building up on our considerations introduced above, we will conclude the service design in
this section by discussing the missing piece, which is the operation concept. To this end, it
should be recalled first that (in this work) a service consists of several components (like API
or worker) and that in reality operation might require that several instances of each compo-
nent are executed in parallel, possibly distributed over several machines (see Section 5.3). We
have referred to the latter as processes in order to distinguish the running instance from the
implementation. The management of these processes, commonly referred to as orchestration,
is a tedious activity best left to specialized and well-established applications. In consequence,
the first step towards the operation concept is to select an appropriate orchestration soft-
ware, where it needs to be considered that service providers have different demands here,
ranging from cloud computing professionals of commercial companies with a primary interest
in high availability and scalability (NFR01) to academic researchers with no experience with
the utilization of orchestration software (NFR07). Systematic comparisons of orchestration
applications [Malviya and Dwivedi, 2022, Jawarneh et al., 2019, Mercl and Pavlik, 2019] sug-
gest Kubernetes40 for the first group and Docker Swarm41 for the second. Both orchestrators
require that the processes of the service are wrapped in containers. As Docker42 containers are
supported by both they are selected.

Beyond the execution of the service components as described in the previous sections, pro-
visioning of functional services to EMSs requires that a service provider operates additional
supportive applications. The need for the first one of these supportive applications arises from
the simple demand that the API containers must be accessible for the EMSs (FR04 and FR06),
as well as that requests from clients should be distributed over the API containers of a ser-
vice, in order to allow highly available and scalable operation (NFR01). We will refer to the
application that fulfills this duty as gateway. However, it should be noted that such applica-
tions are often alternatively named reverse proxy or ingress43, the latter in particular in the
context of Kubernetes. It is common, too, that the gateway encrypts the communication with
the client, i.e. by utilizing the Hypertext Transfer Protocol Secure (HTTPS), on behalf of the
payload application, in our case, the service. This procedure removes the burden of integrating
the security-relevant and vastly complex encryption logic into the code base of the API com-
ponent while still satisfying the requirement that communication between client and service
must be secure (NFR02). The second supportive application is necessary to issue JWT tokens
to clients in order to satisfy NFR03 as discussed in Section 5.1. Such applications are usually
referred to as Identity Provider (IdP) and the current best practice choice for issuing JWTs is
the OpenID Connect (OIDC) protocol [Scott and Neray, 2021, Kornienko et al., 2021]. Hence,
our operation concept follows this best practice and intends that a well-established IdP soft-
ware, like e.g. Keycloak44, is used in order to administrate access control and to issue JWT
tokens to the client software using OIDC. Finally, it is worth noting that it may not be nec-
essary that every service provider operates an IdP by themselves. Especially in the context of
academic research, it is likely sufficient that one partner operates an IdP, e.g. for a project,
while services can still be distributed over several partners. This significantly reduces the effort
for providing services for those partners that do not serve the IdP, as operating the latter
is a complex task requiring specialized knowledge. This possibility should support especially
academic researchers with backgrounds other than informatics.

40https://kubernetes.io/
41https://docs.docker.com/engine/swarm/
42https://www.docker.com/resources/what-container/
43https://kubernetes.io/docs/concepts/services-networking/ingress/
44https://www.keycloak.org/

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://www.docker.com/resources/what-container/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://www.keycloak.org/

Data-Centric Engineering 21

6. Implementation
In this section, we present the reference implementation of the design concept introduced above,
which is released alongside this paper as an open source repository and which we refer to as
Energy Service Generics (ESG). The latter is implemented in Python, which has been selected
due to the availability of many relevant software libraries for the implementation of forecasting
and optimization algorithms, like e.g. PyTorch45, TensorFlow46 or Pyomo47. Furthermore,
Python offers high connectivity to other programming languages, especially the integration of
C and C++ is natively supported48. Furthermore, the latter allows the integration of code
written in other programming languages that can be compiled to C, e.g. go49. While there
may be no simple solution to integrate code written in some programming languages, like e.g.
especially Java, into the ESG framework, the concepts described in Section 5 are sufficiently
generic to allow an implementation of a similar framework in other programming languages.
However, this is not subject to this work, which presents only one implementation of the design
concept, which is the ESG framework written in Python.

It is worth noting that the following sections are, on purpose, rather concise, i.e. cover
the relevant points to demonstrate that the proposed implementation satisfies the respective
requirements. Additional details will be omitted for the sake of conciseness, in particular as the
implementation should be continuously developed further as an open source project (see Section
7), which will likely lead to significant differences compared to the code state at the publication
date of this paper. However, further information is provided in the ESG repository50, including
examples how services and clients can be implemented.

6.1. Worker, Garbage Collector, and Inter-Process Communication
In order to ensure that our implementation is robust and to minimize future maintenance effort,
we refrain from developing a custom approach for the inter-process communication between
API and worker. Instead, we utilize Celery51, a well-established, stable, and open-source Python
library for distributed task execution. It is worth noting that Celery is particularly well suited
for use cases similar to ours, i.e. to decouple client-facing web components from worker pro-
cesses in a scalable fashion. Furthermore, Celery supports multiple message brokers, including
the well-established Redis52 and RabbitMQ53, which gives service providers flexibility to choose
a broker matching their demands, tech stack, and/or skill set of employees. We provide an
implementation of a generic worker, which invokes the service specific forecasting or optimiza-
tion code in the ESG package. The worker makes use of Celery to interact with the message
broker and implements the functionality described in Section 5.3. Finally, Celery provides a
garbage collector functionality. Dependent on the choice of message broker the latter may be
available without the need for a dedicated process, more details are provided in the respective
part of the documentation54.

45https://pytorch.org/
46https://www.tensorflow.org/
47https://www.pyomo.org/
48https://docs.python.org/3/extending/extending.html
49https://pkg.go.dev/cmd/cgo
50https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/
51https://docs.celeryq.dev/
52https://redis.io/
53https://rabbitmq.com/
54https://docs.celeryq.dev/en/stable/userguide/configuration.html#result-expires

https://pytorch.org/
https://www.tensorflow.org/
https://www.pyomo.org/
https://docs.python.org/3/extending/extending.html
https://pkg.go.dev/cmd/cgo
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/
https://docs.celeryq.dev/
https://redis.io/
https://rabbitmq.com/
https://docs.celeryq.dev/en/stable/userguide/configuration.html#result-expires

22 David Wölfle et al.

6.2. API
The first step towards implementing the API is to select an appropriate framework to
build upon. Considering the choice of Python as programming language, it follows that two
well-established web frameworks are available55, these are Flask56 and FastAPI57. Several
requirements need to be considered in order to select one of the two candidates objec-
tively. In particular, these are FR09 (service developers should be able to automatically
generate a documentation), NFR09 (EMS developers should be able to quickly understand
the API using the documentation) as well as NFR10 (EMS developers should be able to
implement a client with little effort). We have selected FastAPI because it is generally
considered to have a better integration of the OpenAPI specification58 and tool ecosystem
[Singh, 2023, Krebs and Cruz Martinez, 2022]. OpenAPI schema is a gold standard for docu-
menting REST APIs. FastAPI is capable of automatically generating and hosting OpenAPI
schema documents as well as serving Swagger UI59. The latter is an interactive API doc-
umentation building up on the former, thus satisfying FR09. Furthermore, an interactive
documentation is considered to be especially helpful for client developers to quickly understand
an API [Hunter, 2017], which makes FastAPI a reasonable choice to fulfill NFR09. Another
helpful tool from the OpenAPI ecosystem is Swagger Codegen60 which allows the automatic
generation of large shares of client code for an impressive number of programming languages,
thus satisfying NFR10.

Using FastAPI, our implementation of the API component is capable of serving the endpoints
defined in Section 5.1. It is fully functional, apart from the definition of the data models, i.e.
the input data for POST /request/ and POST /fit-parameters/ as well as the corresponding
GET /result/ API methods, which need to be defined by the service provider. It is worth
noting that the definition of the data models is simple and fast to implement in order to fulfill
NFR06. A practical example and additional details are provided in Section 8.1.2. Furthermore,
our implementation of the API component puts the communication concept defined in Section
5.2 into action, i.e. it transposes the HTTP calls of the clients into interactions with the message
broker using the Celery framework introduced above, but only after the corresponding JWT
of the call has been verified and checked. We utilize the PyJWT61 package for the latter.
Finally, it is worth mentioning that our implementation solely utilizes the JavaScript Object
Notation (JSON) data format for all data exchange, as the latter is interpretable for humans and
machines alike and furthermore considered to be the best choice for REST APIs [Hunter, 2017].

6.3. Other Functionality
Besides the implementation of the API and the process management system, the ESG package
provides additional useful functionality for the implementation of and interaction with services.
Particularly relevant is a generic client that can be used to trigger calls to services from Python
source code. Furthermore, the package contains building blocks for data models, in order to
reduce the effort for implementing these as well as to prevent code redundancy, see Section
8.1.2 for further details. Additionally, useful utility functions are available, like e.g. to parse
pandas62 "DataFrames" from JSON data.

55Django is a well-established and Python-based web framework too. However, Django is primarily intended for the
development of websites and heavily relies on communication with a database, and is hence not regarded a suitable
candidate here.

56https://palletsprojects.com/p/flask/
57https://fastapi.tiangolo.com/
58https://swagger.io/specification/
59https://swagger.io/tools/swagger-ui/
60https://swagger.io/tools/swagger-codegen/
61https://pyjwt.readthedocs.io/en/stable/
62A popular Python library for analysis and manipulation of time series data.

https://palletsprojects.com/p/flask/
https://fastapi.tiangolo.com/
https://swagger.io/specification/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-codegen/
https://pyjwt.readthedocs.io/en/stable/

Data-Centric Engineering 23

7. Community Concept
Above, we have discussed the design and implementation of the service framework that sat-
isfies the requirements presented in Section 4.2 and 4.3, with two exceptions: So far, we have
not addressed that service developers and providers should be able to verify the correct imple-
mentation (NFR04) and that the service framework should be actively maintained (NFR05).
We satisfy the first of these two requirements by releasing our implementation (i.e. the ESG
package) as free and open-source repository, including an extensive documentation. A link to
the repository is provided in the section "Supplementary Material" at the end of this paper.
In order to fulfill NFR05, we strive to find a concept that ensures the continuous mainte-
nance of the service framework. To that end, we first consider that typical reasons for modern
open source projects to fail are usurpation by competitors, the project being not useful any-
more or the lack of time and interest of developers [Coelho and Valente, 2017]. While we
certainly cannot prevent that forecasting and optimization services may be not useful any-
more at some point in the future, we strive to anticipate the remaining reasons leading to
the abandoning of open source projects by initiating the Open Energy Services community.
Following the classification and discussion about possible organizational forms of commu-
nities that maintain open source projects in [Eckert et al., 2019], we chose the form of an
autonomous community, i.e. one that is not closely tied to nor owned by a company or orga-
nization, as we want to avert that service providers may object utilizing the framework due
to interest clashes with the former. Furthermore, we have considered current best practices
[Fogel, 2022, Mateos-Garcia and Steinmueller, 2008] while setting up the internal structures of
the community in order to let decentralized and vital processes for exchange, development, and
maintenance flourish.

The efforts of our community are not to be limited to the maintenance of the framework.
Instead, the goal is to directly support the widespread adoption of EMS by connecting service
developers, service providers and EMS developers, all of which are invited to become members
of the community. We strive to develop a number of forecasting and optimization services and
release these as open source repositories. Furthermore, it is intended to operate a selection of
services for the public63. Here, the concept is to first provide basic building blocks for energy
optimization, like e.g. forecasting services for electric loads or PV power generation, in order
to bootstrap energy management-related research and development activities, particularly by
further academic institutions. The main communication medium is the community website64,
where we will release further information about recent activities and developments arising from
our continuous efforts. Furthermore, and inspired by the FAIR principles for research soft-
ware [Lamprecht et al., 2020], the website contains a registry for service-related open source
repositories, as well as a registry for operated services. The main intention is that the commu-
nity website should become the primary source of objective information about forecasting and
optimization services for energy management applications in the future.

The founding members of the Open Energy Services community are the research institutions
to which the authors of this paper belong. However, we explicitly invite other institutions
and persons to join in order to establish a solid basis for the development and operation of
forecasting and optimization services that enable energy management solutions at scale.

63Note that we plan to provide these services free of charge. However, we will likely take measures to limit the load
to our compute resources, e.g. by restricting access to registered clients or by limiting the number of API calls allowed
per time.

64https://open-energy-services.org/

https://open-energy-services.org/

24 David Wölfle et al.

8. Evaluation
The goal of this paper is to support the widespread adoption of EMSs in order to unlock
the flexibility and energy savings potentials of end consumers. To this end, we contribute a
concept for a software framework that allows the derivation of fully functional services from
existing forecasting or optimization code with ease. Furthermore, we publish an open-source
implementation of our proposed approach. Additionally, we establish a community in order to
ensure the future maintenance of the framework, but also to support the widespread adoption
of forecasting and optimization services in energy management applications.

We demonstrate in this section that our contributions are actually sufficient to reach our
claimed goal of this paper, i.e. that our framework and community concept are useful for estab-
lishing forecasting and optimization services for energy management applications. To this end
we begin by showcasing that our framework allows service developers to derive forecasting or
optimization services with ease by providing a practical example for the implementation of a
service. As it is also intended that the derived services can be integrated effortlessly into EMSs,
we demonstrate the latter by providing two practical examples of client scripts that allow inter-
acting with the previously derived example service. We continue our practical demonstration
by exploring the scalability of services in order to verify that the services derived with our
framework are indeed capable of serving thousands of EMSs. We conclude our evaluation with
a structured comparison of the derived requirements with our concept and implementation, to
illustrate the completeness of our work.

8.1. Deriving Services
As a first step towards proving the relevance of this work, we demonstrate how a simple
(but fully functional) PV power generation forecast service can be implemented using the
proposed framework. The following subsections present and discuss the implementation of the
components of the service. It should be noted that the forecasting algorithm of the illustrated
service, including the quality of the forecasts the service could compute, is not of particular
interest. Instead, the aim of this section is to demonstrate the value of the framework, which
can be perceived by realizing how short the code listings below are. Besides the forecasting or
optimization algorithm, which must be implemented anyway, deriving the functional example
service requires less than 100 lines of code. On the other hand, at the time of writing, the
ESG repository contained about 2400 lines of code, excluding examples and documentation. It
is thus obvious that utilization of the ESG framework is much more work-efficient compared
to the implementation of services from scratch, as the latter would require the developer to
implement a larger fraction of the code provided by the framework. In fact, implementing
services from scratch might be far more time-consuming than the proportion of lines of code
suggests. This is, in particular, the case as the code using the framework is quite simple, as
demonstrated below, while some parts provided by the framework are complex and need to be
implemented carefully, e.g. due to security concerns or impacts on runtime behavior.

It is worth noting that the code listings provided below are part of the ESG repository65,
whereby the online version might be adapted to any potential future changes of the ESG
framework. We thus suggest all those wishing to reproduce this example, i.e. run the example
service, to use the files provided in the repository.

8.1.1. The Forecasting or Optimization Code
The forecasting or optimization code is the payload of the service, i.e. the goal of applying
the ESG framework is to make this component accessible to EMSs. The ESG framework has

65https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/
basic_example

https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/basic_example
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/basic_example

Data-Centric Engineering 25

been designed to make integration of existing forecasting or optimization code simple, which
is demonstrated in the example by utilizing the popular pvlib66 for computing the PV power
production forecast. However, it is worth noting that the framework does not induce any restric-
tions on the forecasting or optimization code wrapped by it. For example, linear programs,
classical statistical models, or fully black-box machine learning approaches are all possible.
Even model ensembles can be realized, either as a single service or as a service that calls other
services as ensemble members.

In order to allow pvlib to compute the forecasts, it is necessary to provide the corresponding
input data to the library. The first part of this input data is the specification of the PV system
for which the forecast should be computed. We assume that the PV system is sufficiently
described by the geographic position, i.e. latitude and longitude, as well as the geometry of
the PV system, i.e. azimuth and inclination, and the peak power. All other options to describe
the PV system offered by pvlib67 are neglected to make this example not more complex than
necessary. The second part of the required input to compute PV power prediction consists of
meteorological forecast data, especially forecasts of solar irradiance.

Before we proceed with the discussion about the handling of input data by the ESG frame-
work, it is worth recalling that the framework supports two types of endpoints, these are
/request/ and /fit-parameters/. This differentiation arises from the requirement FR05,
i.e. that the ESG framework should allow forecasting or optimization code that uses ML
approaches, which induces that some parameters of a model must be fitted utilizing obser-
vations of the target system, see Section 5.1 for details. Regarding the example above, we
assume that the service is intended to produce PV power generation forecasts for systems for
which geometry and peak power values may be unknown and need to be estimated from power
production measurements. The parameter fitting has been implemented with a simple least
squares approach, although it should be noted that this choice has no particular relevance for
the present example. Thus, the input data necessary to obtain a forecast is separated into two
groups: latitude and longitude are arguments while azimuth, inclination, and peak power are
parameters. It is worth noting that parameters are not necessarily interpretable as in this exam-
ple, e.g. weights and bias terms of a neural network could be parameters too. Finally, it should
be considered that it may not be reasonable to demand all input data as client input. In the
present example, the service fetches the meteorological data automatically from a third-party
web service, which would, in practice, make the interaction with the service more convenient
and less error-prone for the client. Finally, the following points concerning the code listing
below should be noted:

1. The format of input_data and output_data is implicitly defined in the corresponding data
models, which are introduced in the following section.

2. The functions predict_pv_power, fetch_meteo_data as well as fit_with_least_squares
have been omitted from the listing, as the practical implementation details of those are
not of particular interest for the scope of this work. However, the code of the omitted
functions can be found in the repository of the ESG framework.

3. Implementing fit_parameters is optional and can be omitted for services without fittable
parameters. An example without fittable parameters could be a service wrapping the
AutoPV algorithm proposed in [Meisenbacher et al., 2023].

Listing 1. Integration of the forecasting or optimization code.
from esg.utils.pandas import series_from_value_message_list
from esg.utils.pandas import value_message_list_from_series

66https://github.com/pvlib/pvlib-python
67https://pvlib-python.readthedocs.io/en/stable/user_guide/modelchain.html

https://github.com/pvlib/pvlib-python
https://pvlib-python.readthedocs.io/en/stable/user_guide/modelchain.html

26 David Wölfle et al.

def handle_request(input_data):
arguments = input_data.arguments
parameters = input_data.parameters
meteo_data = fetch_meteo_data(

lat=arguments.geographic_position.latitude,
lon=arguments.geographic_position.longitude,

)
pv_power = predict_pv_power(

lat=arguments.geographic_position.latitude,
lon=arguments.geographic_position.longitude,
azimuth=parameters.pv_system.azimuth_angle,
inclination=parameters.pv_system.inclination_angle,
peak_power=parameters.pv_system.nominal_power,
meteo_data=meteo_data,

)
output_data = {"power_prediction": value_message_list_from_series(pv_power)}
return output_data

def fit_parameters(input_data):
arguments = input_data.arguments
measured_power = series_from_value_message_list(input_data.observations.measured_power)
meteo_data = fetch_meteo_data(

lat=arguments.geographic_position.latitude,
lon=arguments.geographic_position.longitude,
past_days=90,

)
measured_power = series_from_value_message_list(input_data.observations.measured_power)
fitted_pv_system = fit_with_least_squares(

lat=arguments.geographic_position.latitude,
lon=arguments.geographic_position.longitude,
meteo_data=meteo_data,
measured_power=measured_power,

)
return fitted_pv_system

It should be noted that the two functions defined above, i.e. handle_request and
fit_parameters, are the only part of the implementation of the service that actually inter-
acts with the forecasting or optimization algorithm. The duty of these functions is to correctly
invoke the forecasting or optimization code with the necessary input data.

8.1.2. The Data Model
In addition to the forecasting or optimization code introduced above, the data model is the
second component that is service specific and which must thus be defined by the service devel-
oper. The data models define the format of the data the client exchanges with the service. For a
service without fittable parameters, i.e. a service with /request/ endpoints only, it is sufficient
to define the arguments required for computing the request as well as the result of the com-
putation. The corresponding data models are called RequestArguments and RequestOutput. It is
worth noting that RequestArguments could also contain constraints that optimization services
should account for. Furthermore, RequestArguments will likely often contain a field that defines
the temporal resolution of the generated forecast or optimized schedule. Alternatively, some
services may implement a fixed temporal resolution that cannot be manipulated by the client.
In the present example, the PV power generation forecast is always returned on an interval of
15 minutes.

Data-Centric Engineering 27

In the case of a service with fittable parameters, it is additionally necessary to define the
data format for the input and output data for the /fit-parameters/ endpoints. The data
models specifying the input for the fitting process are referred to as FitParameterArguments
and Observations, and the corresponding output is FittedParameters. As the simple PV power
generation forecast service used as an example is designed to provide functionality to fit
parameters, it is necessary to define all five data models introduced above. The corresponding
implementation is shown in Listing 2.

Listing 2. Definition of the data models.
from esg.models.base import _BaseModel
from esg.models.datapoint import ValueMessageList
from esg.models.metadata import GeographicPosition, PVSystem
from pydantic import Field

class RequestArguments(_BaseModel):
geographic_position: GeographicPosition

class RequestOutput(_BaseModel):
power_prediction: ValueMessageList = Field(description="Prediction of power production in W")

class FitParameterArguments(_BaseModel):
geographic_position: GeographicPosition

class Observations(_BaseModel):
measured_power: ValueMessageList = Field(description="Measured power production in W")

class FittedParameters(_BaseModel):
pv_system: PVSystem

At this point, it is worth noting that the ESG package provides ready-to-use building blocks
for data models. For example, in the code above, GeographicPosition is imported from ESG.
The former is a data model too, which defines that a geographic position consists of latitude
and longitude. Furthermore, it is crucial to note that the data models serve additional func-
tionality beyond the definition of the data format. Particularly important is the provisioning
of documentation of the format in human-readable form (e.g. the description in the exam-
ple above) as well as defining permitted ranges for values, the latter is utilized by the derived
service to automatically validate the input data provided by clients. An example for such a per-
mitted range could be to enforce that values for latitude must be in the range of −90◦ . . . 90◦.
This rule is, in fact, implemented in GeographicPosition, although this is not directly visible
in the code example above. However, it can be perceived by inspecting the source code of the
GeographicPosition data model68.

8.1.3. The Worker
The worker component is responsible for executing the tasks, i.e. computing requests or fitting
parameters by invoking the forecasting or optimization code, as well as task scheduling. Further
details are provided in Sections 5.2 and 5.3. The ESG framework utilizes the Celery library for
implementing the worker, but extends the latter with functionality to make the implementation
of services more convenient, for example by utilizing the data models for de-/serialization of
input and output data. Thus, the main objective for implementing a worker is to wire up the
data models with the forecasting or optimization code, which should usually require a rather
simple program, as displayed in Listing 3, for the PV power generation forecast example service.

68https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/blob/main/source/esg/models/
metadata.py

https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/blob/main/source/esg/models/metadata.py
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/blob/main/source/esg/models/metadata.py

28 David Wölfle et al.

Listing 3. Definition of the worker tasks.
from esg.service.worker import celery_app_from_environ
from esg.service.worker import invoke_fit_parameters
from esg.service.worker import invoke_handle_request

from data_model import RequestArguments, RequestOutput
from data_model import FittedParameters, Observations
from data_model import FitParameterArguments
from fooc import fit_parameters, handle_request

app = celery_app_from_environ()

@app.task
def request_task(input_data_json):

return invoke_handle_request(
input_data_json=input_data_json,
RequestArguments=RequestArguments,
FittedParameters=FittedParameters,
handle_request_function=handle_request,
RequestOutput=RequestOutput,

)

@app.task
def fit_parameters_task(input_data_json):

return invoke_fit_parameters(
input_data_json=input_data_json,
FitParameterArguments=FitParameterArguments,
Observations=Observations,
fit_parameters_function=fit_parameters,
FittedParameters=FittedParameters,

)

8.1.4. The API
The API component connects the worker with the client by allowing the latter to trigger
the computation of requests or fitting of parameters as well as retrieving the corresponding
results. To this end, the API component has to check the client input for validity and create the
computation tasks. Furthermore, the API component handles authentication and authorization
of clients. More details about the API design are provided in Section 5.1.

The implementation of the API component is available ready-to-use in the ESG framework.
However, in order to operate the API it is necessary, similar to the worker, to wire up the
API with the other components, in particular with the data model and the worker. Further-
more, some information like name and version number must be provided too. Nevertheless, the
necessary code to instantiate an API component is trivially simple and shown in Listing 4.

Listing 4. Instantiation of the API component.
from data_model import RequestArguments, RequestOutput
from data_model import FittedParameters, Observations
from data_model import FitParameterArguments
from worker import request_task, fit_parameters_task

api = API(
RequestArguments=RequestArguments,
RequestOutput=RequestOutput,

Data-Centric Engineering 29

FittedParameters=FittedParameters,
Observations=Observations,
FitParameterArguments=FitParameterArguments,
request_task=request_task,
fit_parameters_task=fit_parameters_task,
title="PV Power Prediction Example Service",

)

if __name__ == "__main__":
api.run()

8.1.5. The Service
Following the operation concept for services, as given in Section 5.4, the last remaining step for
the service developer to derive functional services is to build docker images that can be run,
e.g. on Kubernetes. It is necessary to build two distinct images, one for the API (which includes
the data model) and one for the worker (which includes the data model and the forecasting or
optimization code). The build instructions for both images are implemented as Dockerfile69,
see Listings 5 and 6.

Listing 5. Dockerfile for the API container.
FROM energy-service-generics:latest-service

COPY api.py data_model.py worker.py /source/service/

CMD ["/source/service/api.py"]

Listing 6. Dockerfile for the worker container.
FROM energy-service-generics:latest-service-pandas

RUN pip install pvlib scipy
COPY data_model.py fooc.py worker.py /source/service/

ENTRYPOINT ["celery"]
CMD ["--app", "worker", "worker", "--loglevel=INFO"]

8.2. Client Implementation
Above, see NFR10, we have argued that a key requirement for the widespread integration of
services into EMSs is the ease of client implementation. In order to demonstrate the latter we
provide an example for a minimal client, implemented as shell script, capable of retrieving PV
power generation forecasts from the service introduced in the previous section in Listing 7.
It should be noted that the example assumes that the service is reachable via the localhost
network address, i.e. that the client is executed on the same machine as the service. Note
further that the latest version of the code listed below, i.e. the version adapted to potential
future changes of the framework, is provided as part of the ESG repository70.

Listing 7. Minimal example of a client script that allows retrieving PV power generation
forecasts from the example service.

69https://docs.docker.com/reference/dockerfile/
70https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/

minimial_client

https://docs.docker.com/reference/dockerfile/
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/minimial_client
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/minimial_client

30 David Wölfle et al.

SERVICE_BASE_URL=${SERVICE_BASE_URL:-http://localhost:8800}
SERVICE_VERSION="test_version"

Request a PV power generation forecast from the basic example service.
response=$(

curl -X 'POST' \
"${SERVICE_BASE_URL}/${SERVICE_VERSION}/request/" \
-d '{

"arguments": {
"geographic_position": {

"latitude": 49.01365,
"longitude": 8.40444

}
},
"parameters": {

"pv_system": {
"azimuth_angle": 0,
"inclination_angle": 30,
"nominal_power": 15

}
}

}'
)

Extract the ID of the task from the JSON response.
task_ID=$(echo $response | jq -r .task_ID)

Poll status endpoint until status is ready.
status="unknown"
while [$status != "ready"]
do

sleep 1
response=$(

curl -X 'GET' \
"${SERVICE_BASE_URL}/${SERVICE_VERSION}/request/${task_ID}/status/"

)
status=$(echo $response | jq -r .status_text)

done

Fetch and print the result.
response=$(

curl -X 'GET' \
"${SERVICE_BASE_URL}/${SERVICE_VERSION}/request/${task_ID}/result/"

)
echo $response | jq

One can perceive from inspecting the code above that the client logic is indeed very simple,
thus easy to implement. The script is written in standard Unix Shell syntax and uses only two
additional packages, curl for making HTTP requests and jq for parsing JSON. The script
follows the API concept derived in Section 5.1. That is, a request is created with the first curl
call. The large nested structure underneath defines the input arguments and parameters that
are provided to the service. More discussion about the latter, including an explanation about
the fields, is provided in Section 8.1.2. Next, the script extracts the task ID of the created
request and polls the /status/ endpoint until the task has reached the ready status and

Data-Centric Engineering 31

finally fetches the result. Note that the interaction with the /fit-parameters/ endpoint of
the service follows the same pattern and is thus omitted here for brevity.

While the service integration used in a production EMS would likely require more function-
ality, e.g. to parse the result into the format the EMS expects or to handle network errors, the
concept of the client always remains the same. In fact, the ESG package contains a ready-to-use
generic client71 which provides this additional functionality and reduces the implementation
effort further.

Listing 8. Example of a client script that allows retrieving PV power generation forecasts
from the example service using the generic client provided in the ESG package.
import os

from esg.clients.service import GenericServiceClient
from esg.models.base import _BaseModel
from esg.models.datapoint import ValueMessageList
from esg.models.metadata import GeographicPosition, PVSystem
from esg.service.worker import compute_request_input_model
from pydantic import Field

SERVICE_BASE_URL = os.getenv("SERVICE_BASE_URL")

class RequestArguments(_BaseModel):
geographic_position: GeographicPosition

class FittedParameters(_BaseModel):
pv_system: PVSystem

RequestInput = compute_request_input_model(
RequestArguments=RequestArguments, FittedParameters=FittedParameters

)

class RequestOutput(_BaseModel):
power_prediction: ValueMessageList = Field(description="Prediction of power production in W")

client = GenericServiceClient(
base_url=SERVICE_BASE_URL, InputModel=RequestInput, OutputModel=RequestOutput

)

client.post_obj(
input_data_obj={

"arguments": {"geographic_position": {"latitude": 49.01365, "longitude": 8.40444}},
"parameters": {

"pv_system": {"azimuth_angle": 0, "inclination_angle": 30, "nominal_power": 15}
},

}
)

print(client.get_results_obj())

The code in Listing 8 demonstrates that the generic client class, which is provided as part
of the ESG package, reduces the effort to the implementation of the data models as well as
configuring the endpoint of the service the client should use. It is worth noting that specifying

71https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/blob/main/source/esg/clients/
service.py

https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/blob/main/source/esg/clients/service.py
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/blob/main/source/esg/clients/service.py

32 David Wölfle et al.

the data models has been left on purpose for the developer of the client, although it is technically
possible that the client fetches the latter automatically from the service. However, the idea is
that the implementation of the data model on the client side documents the data structure
that the downstream application, i.e. the EMS, is designed for. That is, it allows the client
application to detect any changes in the format of the data provided by the service. While such
changes should not happen in theory, see discussion in NFR08 and about versioning in Section
5.1, they might still occur due to mistakes made by developers of services. Here, it is likely
much simpler to debug an error that is thrown directly in the client code than some error deep
downstream in the application using the data, which might have no obvious direct connection
to the service and its data format.

Finally, we would like to point out that the generic client provided by the ESG package can
only be used in applications capable of executing Python programs. Any developer working
on an application not capable of the latter will likely need to implement the client logic from
scratch. However, the effort for such an activity should be rather limited as the generic client
has been implemented in less than 400 lines of code. As an alternative, the developer could
resort to partly automatically generate the client program using Swagger Codegen, see Section
6.2 for further details.

8.3. Scalability of Services
One of the core claims of this work is that the presented framework enables operation of fore-
casting and optimization services for potentially thousands of EMSs. In order to demonstrate
that this claim is indeed legitimate, we present an experiment that assesses the scalability in
the present section.

8.3.1. Experiment Design
The goal of the experiment design described here is to create a situation in which we can
examine the influence of horizontal scaling on the operation of a service using the proposed
framework. In particular, the experiment is intended to investigate the scalability related to
communication overhead between worker and API instances. The latter is of particular impor-
tance as, given sufficient available funds, compute resources can be bought in nearly infinite
amounts, which means that the actual limiting factor to scalability is the inter-process com-
munication, i.e. in our case the communication between API and worker containers as well as
the intermediary message broker.

In contrast, very limited computing resources have been available for this experiment. In
particular, the experiment was carried out on a single virtualized server with access to 64GiB
of main memory and 12 cores of an Intel Xeon 4116 CPU. We used Ubuntu 22.0472 as oper-
ating system and Microk8s73, a Kubernetes distribution especially suitable for research and
development, as container orchestration engine. A dedicated service, henceforth referred to as
scalability tester service, has been implemented using the ESG framework for the sake of this
experiment. The implementation consists of the previously described components, i.e. data
model, worker, API, as well as forecasting or optimization code. Especial consideration has
been devoted to designing the latter as, given the limited resources and desired high number
of tasks, it is obviously not possible to conduct any operation which requires a non-neglectable
amount of compute resources. On the other hand, the component representing the forecasting
or optimization code should provoke a realistic call pattern by the clients. That is, the clients
will usually poll the /status/ endpoint several times before the result becomes available. We
expect this polling mechanism to have a significant impact on the communication load inside a

72https://ubuntu.com/
73https://microk8s.io/

https://ubuntu.com/
https://microk8s.io/

Data-Centric Engineering 33

1 2 4 8 16
Replication Factor

20

40

60

80

100

120

Pr
oc

es
sin

g
Ti

m
e

[s
]

Measured Average
Ideal

Figure 6. Measured and ideal time for processing 10.000 requests over replication factor.

service, as every status call triggers a lookup operation on the message broker. In order to sat-
isfy both demands, we have implemented a simple sleep operation of ten seconds representing
the forecasting or optimization code, as it does not induce CPU load while still blocking the
worker and preventing immediately available results. Furthermore, a code simulating clients
has been implemented. The latter uses the 100 instances74 of the generic client (as introduced
in Section 8.2) that issue in total 10.000 requests in very close time proximity. Utilizing the
standard settings for the generic client, each client polls the /status/ endpoint once per sec-
ond and retrieves the results as they become ready. It is worth noting that each worker instance
is configured to spawn 1000 threads, i.e. is capable of processing 1000 tasks in parallel. From
this follows that there is an ideal bound for the processing time of the requests that is depen-
dent on the number of worker instances. For example, neglecting all communication overhead,
two workers of the scalability tester service are capable of processing 2.000 requests (because
of the 1.000 threads per worker) every 10 seconds (due to the sleep time of 10 seconds rep-
resenting the forecasting or optimization code), thus leading to a minimum compute time of
50 seconds for all 10.000 requests. Further details about the implementation of the scalability
tester service and the corresponding clients are omitted here for brevity. However, the source
code is provided in the ESG repository75.

8.3.2. Experiment Execution and Results
In order to execute the experiment, the scalability tester service was deployed to the single-
node Kubernetes instance introduced above. Utilizing the latter, the API and worker instances
were scaled to a selected number, henceforth referred to as replication factor, i.e. it was taken
care that this many instances of each the worker and API container were executed. The API
and worker containers were using a single-node Redis76 instance as message broker, a popular
choice given the implementation of the ESG package77. The actual experiment was conducted
by executing the code invoking the clients. The latter was run on the personal laptop of one of
the authors that was connected over the public internet to the service for extended realism.

74It has not been possible to use a single client for each call as this exhausted the network resources, i.e. the number
of dynamic ports, on the machine executing the respective script.

75https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/ scala-
bility_example

76https://redis.io/
77https://docs.celeryq.dev/en/stable/getting-started/backends-and-brokers/index.html#redis

https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/scalability_example
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics/tree/main/docs/examples/scalability_example
https://redis.io/
https://docs.celeryq.dev/en/stable/getting-started/backends-and-brokers/index.html#redis

34 David Wölfle et al.

The result, as shown in Figure 6, is the average elapsed time starting directly before the
program issued the first request and ending after all results have been available and transferred
back. The measurements were repeated three times and the difference between the minimum
and the maximum of the measured times were for all replication factors one second or less, the
results appear thus robust and reliable. It can be seen that the time required for processing
10.000 requests shrinks from initially ca. 120 to approx. 35 seconds as the replication factor is
increased from 1 over 2, 4, 8, and finally 16. It is thus clearly possible to mitigate a growing
number of requests by replicating worker and API instances as the total number of requests per
time unit is reciprocal to the processing time required for handling a fixed number of requests.

An interesting observation from the inspection of the measured results is that increasing the
replication factor from 8 to 16 yields only a rather small gain of one second in real processing
time, while the ideal processing times suggest a significant reduction from 20 to 10 seconds.
Analysis of the CPU and memory consumption of the machine on which the experiment was
executed on yielded no evidence that exhausted hardware could have been the reason. However,
it appears likely that this behavior has been caused by the high number of threads (16.000 with
the largest replication factor!), which very likely imposes a significant overhead for the operating
system to switch tasks between these. In the latter case distributing the worker instances over
more than one machine should improve the performance even further. While, at the time of
writing, we do not possess the technical resources to validate this claim experimentally, we plan
to catch up on this matter once we have access to a more sophisticated and better equipped
Kubernetes cluster.

Finally, it is worth mentioning that the processing time of 35 seconds for 10.000 requests is
roughly equivalent to 250.000 EMSs issuing one request per 15 minutes, which appears a solid
foundation for forecasting and optimization services at scale. However, we estimate that using
more sophisticated computing resources, it should rather easily be possible to serve several
millions of EMSs.

8.4. Comparison of Requirements with Concept and Implementation
As last part of our evaluation, this section presents a systematic comparison of the requirements
derived in this work with the realization of our proposed framework and community concept.
This comparison is provided in Table 2 for the functional and non-functional requirements
defined in Section 4.2 and 4.3. One can easily perceive that our contributions, i.e. design and
implementation of the framework as well as the community concept, do actually satisfy all
requirements by inspecting the provided table.

As the requirements have been carefully derived from the current state of the art of energy
management applications, it is concluded that our proposed framework and community concept
are indeed valuable tools for the implementation and widespread distribution of forecasting and
optimization services.

Data-Centric Engineering 35

Table 2: Comparison of functional and non-functional requirements with actual realization in
service framework and community concept.

ID Description Realization
FR01 A service developer must

be able to derive a func-
tional service with the ser-
vice framework from exist-
ing forecasting or opti-
mization code.

A service developer can derive a functional service by
extending the generic components provided by the
service framework with service specific components.
See Section 5.2 for details.

FR02 An EMS must be able to
interact with the service
over a web API provided
by the service.

An EMS can interact with a service (that utilizes
the service framework) over a REST API. Further
details can be found in Sections 5.1 (design) and 6.2
(implementation).

FR03 An EMS must be able
to request a forecast or
optimized schedule utiliz-
ing the API of the service.

An EMS can request a forecast or optimized schedule
from a service (that utilizes the service framework)
by interacting with the /request/ endpoints defined
in Section 5.1.

FR04 A service developer must
be able to specify the for-
mat of the input and out-
put data exchanged due to
an EMS request for a fore-
cast or optimized schedule
from the service API.

A service developer can specify the format of the
input and output data for the /request/ endpoints
by defining the data model. The concept is defined
in Section 5.2, and a practical example is provided
in Section 8.1.2.

FR05 An EMS must be able to
fit system-specific param-
eters of a service utilizing
its API.

An EMS can fit system-specific parameters of a ser-
vice (that utilizes the service framework) by interact-
ing with the /fit-parameters/ endpoints defined in
Section 5.1.

FR06 A service developer must
be able to specify the for-
mat of the input and out-
put data exchanged while
an EMS interacts with
the API of a service
to fit the system-specific
parameters.

A service developer can specify the format of the
input and output data for the /fit-parameters/
endpoints by defining the corresponding data model.
The concept is defined in Section 5.2, and a practical
example is provided in Section 8.1.2.

FR07 An EMS must have
the option to store
fitted system-specific
parameters locally.

An EMS can fetch the system-specific parame-
ters (i.e. the output of the interaction with the
/fit-parameters/ endpoints) after the service (that
utilizes the service framework) has finished the fitting
process, see Section 5.1. In fact, the service frame-
work does not provide a functionality that would
allow services to permanently store the fitted param-
eters. Further details are provided in Appendix A.

36 David Wölfle et al.

FR08 An EMS must be able
to make calls to the API
of the service which may
take several hours to com-
pute.

An EMS can make calls that take several hours
(or much longer) to compute to the /request/ and
/fit-parameters/ endpoints of a service (that uti-
lizes the service framework) by first posting the
demand for computation, then calling the respective
/status/ endpoint and finally fetching the result
from the respective /result/ endpoint, see Section
5.1 for details.

FR09 A service developer should
be able to automatically
generate a documentation
for the API of a service.

A service developer can automatically generate an
interactive documentation for the API of a service-
based on the data model. See Section 6.2 for details.

NFR01 A service provider must
be able to operate services
with high availability and
scalability.

A service provider can operate services (that uti-
lize the service framework) with high availability and
scalability as the operation concept (see Section 5.4)
for services explicitly considers execution on clusters.
Furthermore, the internal architecture of the services
(see Section 5.3) supports scaling of API and worker
processes over multiple machines, an important pre-
liminary for high availability and performance on
clusters.

NFR02 An EMS must be able
to communicate with the
service over an encrypted
connection.

An EMS can communicate with services over an
encrypted connection as the operation concept (see
Section 5.4) demands that the service provider oper-
ates a gateway application in front of any service.
The gateway encrypts the communication between
client and service with the HTTPS protocol.

NFR03 A service provider must
be able to restrict access
to a service to authorized
EMSs.

A service provider can restrict access to a service
(that utilizes the service framework) by configuring
the latter to verify that incoming calls contain a valid
JWT. A general discussion of this concept can be
found in Section 5.1, while further implementation
details and configuration options are provided in the
online documentation of the service framework.

NFR04 A service develop-
er/provider should be
able to validate the cor-
rect implementation of
the service framework.

A service developer/provider can validate the cor-
rect implementation of the service framework as it
is published as open-source repository, see Section 7
for details.

NFR05 A service develop-
er/provider should be
able to verify that the ser-
vice framework is actively
maintained.

A service developer/provider can verify that the ser-
vice framework is actively maintained by checking
the website of the Open Energy Services commu-
nity or directly contacting members of the latter, see
Section 7 for details.

Data-Centric Engineering 37

NFR06 A service developer should
be able to derive a service
with minimal effort from
an existing forecasting or
optimization algorithm.

Utilizing the service framework, a service developer
can derive a functional service with minimal effort
as all functionality generic to services in general is
concentrated in the implementation of the service
framework, which is readily provided. See Section
5.2 for conceptual details as well as Section 8.1 for
an example demonstrating the implementation of a
simple PV power forecast service.

NFR07 A service provider should
be able to operate a
service without requiring
expert knowledge about
IT infrastructure.

A service provider can operate a service without
requiring expert knowledge about IT infrastructure
as this is explicitly considered in the operation con-
cept (see Section 5.4). Concrete measures include
support for Docker Swarm as orchestration system
as well as the possibility to use an IdP of an allied
service provider.

NFR08 An EMS developer must
be able to specify which
version of a service should
be utilized.

An EMS developer can specify which version of a
service should be utilized by filling in the desired
version in the {version} placeholder that is a part
of all API endpoints, see Section 5.1 for details.

NFR09 An EMS developer should
be able to quickly under-
stand the API of a service
by utilizing the documen-
tation.

An EMS developer can inspect the automatically
generated interactive documentation, the gold stan-
dard regarding comprehensibility, of any service
(that utilizes the service framework). See Section 6.2
for details.

NFR10 An EMS developer should
be able to implement a
client to interact with the
API of a service with min-
imal effort.

An EMS developer can use the generic service client
provided as part of the ESG framework, see Section
8.2 for a practical example. As an alternative, it is
possible to automatically generate the API-related
code of a client using the freely available Swagger
Codegen tool for any service (that utilizes the service
framework). See Section 6.2 for details.

9. Conclusion and Outlook
The aim of this paper is to support the widespread adoption of EMSs in order to unlock flex-
ibility and energy savings potentials of end consumers. We claim that economic viability is a
severe issue for the utilization of EMSs at scale and that the provisioning of forecasting and
optimization algorithms as a service can make a major contribution to achieving it. To this
end, we introduce a software framework that allows the derivation of fully functional services
from existing forecasting or optimization code with ease. Our development of this framework
is strictly systematic and begins by deducing requirements from an extensive analysis of the
application of EMSs in several domains. Based on this, we derive a holistic design concept for
the framework, covering the components, the architecture, and the operation of services. We
derive the ESG package from the proposed design concept, and we publish it as free and open-
source software alongside this work. Beyond the service framework, this paper furthermore
marks the starting point of the Open Energy Service community, our effort to continuously
maintain the service framework but also provide ready-to-use forecasting and optimization
services, to bootstrap future research projects and to accelerate the widespread adoption of

38 List of Abbreviations

EMSs. This community is open for others to join, and any interest in participating is appre-
ciated. Finally, we demonstrate that our framework and our community concept are valuable
contributions that meet the goals of this work. To this end, we provide practical examples for
the implementation of a service based on a simple PV power generation forecasting code, as
well as the corresponding client. Furthermore, we demonstrate that our framework is capa-
ble of supporting the operation of services at relevant scales for EMS applications. We thus
conclude that this work is a relevant step forward towards unlocking the potentials of forecast-
ing and optimization algorithms provided as services for EMSs, which hopefully supports the
utilization of energy management applications at scale.

Acknowledgments. We would like to thank the anonymous reviewers for their constructive feedback, which
helped us to improve this paper. We furthermore like to thank Antonia Dieterich, who supported our analysis
of related work.

Funding Statement. This research has partly been funded by the German Federal Ministry for Economic Affairs
and Climate Action within the projects FlexBlue and AMAZING, the Helmholtz Association under the Program
Energy System Design as well as the European Union within the project WeForming.

Competing Interests. None.

Data Availability Statement. None.

Ethical Standards. The research meets all ethical guidelines, including adherence to the legal requirements of
the study country.

Author Contributions. Conceptualization: D.W; K.F; R.M. Funding acquisition: D.W. T.R; V.H; H.S. Method-
ology: D.W; L.L. Project administration: D.W. Software: D.W. Supervision: R.M; V.H; H.S; Validation: D.W.
Writing – original draft: D.W; K.F; T.R; N.F. Writing – review & editing: D.W; K.F; T.R; N.F; R.M; V.H;
H.S. All authors approved the final submitted draft.

Supplementary Material. The Energy Service Generics repository, including the source code as well as extensive
documentation, can be found at:
https://github.com/fzi-forschungszentrum-informatik/energy-service-generics
Further details and latest news about the Open Energy Services community are provided on the corresponding
website:
https://open-energy-services.org/

List of Abbreviations
API Application Programming Interface.

BAS Building Automation System.
BSS Battery Storage System.

CPU Central Processing Unit.

https://github.com/fzi-forschungszentrum-informatik/energy-service-generics
https://open-energy-services.org/

REFERENCES 39

EMS Energy Management System.
ESG Energy Service Generics.

GUI Graphical User Interface.

HAL Hardware Abstraction Layer.
HTTP Hypertext Transfer Protocol.
HTTPS Hypertext Transfer Protocol Secure.
HVAC Heating, Ventilation and Air Conditioning.

IdP Identity Provider.

JSON JavaScript Object Notation.
JWT JSON Web Token.

ML Machine Learning.

OIDC OpenID Connect.

PV Photovoltaic.

RBC Rule Based Control.
REST Representational State Transfer.
RPC Remote Procedure Call.

URL Uniform Resource Locator.

References
[Al-Ghaili et al., 2021] Al-Ghaili, A. M., Kasim, H., Al-Hada, N. M., Jørgensen, B. N., Othman, M., and Wang,

J. (2021). Energy Management Systems and Strategies in Buildings Sector: A Scoping Review. IEEE Access,
9:63790–63813.

[Alebrahim et al., 2014] Alebrahim, A., Heisel, M., and Meis, R. (2014). A Structured Approach for Eliciting,
Modeling, and Using Quality-Related Domain Knowledge. In Computational Science and Its Applications –
ICCSA 2014, pages 370–386, Cham. Springer International Publishing.

[Alizadeh et al., 2016] Alizadeh, M., Parsa Moghaddam, M., Amjady, N., Siano, P., and Sheikh-El-Eslami, M.
(2016). Flexibility in future power systems with high renewable penetration: A review. Renewable and
Sustainable Energy Reviews, 57:1186–1193.

[Alves et al., 2006] Alves, C. F., Pereira, S., and de Castro, J. B. (2006). A study in market-driven requirements
engineering. In WER, pages 61–66.

[Anand et al., 2023] Anand, H., Nateghi, R., and Alemazkoor, N. (2023). Bottom-up forecasting: Applications
and limitations in load forecasting using smart-meter data. Data-Centric Engineering, 4:e14.

[Anthi et al., 2018] Anthi, E., Javed, A., Rana, O., and Theodorakopoulos, G. (2018). Secure Data Sharing and
Analysis in Cloud-Based Energy Management Systems. In Cloud Infrastructures, Services, and IoT Systems
for Smart Cities, pages 228–242, Cham. Springer International Publishing.

[Antonelli et al., 2012] Antonelli, L., Rossi, G., do Prado Leite, J. C. S., and Oliveros, A. (2012). Deriving
requirements specifications from the application domain language captured by Language Extended Lexicon.
In Proc. Workshop in Requirements Engineering (WER), pages 24–27.

[Berkes and Keshav, 2024] Berkes, A. and Keshav, S. (2024). SOPEVS: Sizing and Operation of PV-EV-
Integrated Modern Homes. In Proceedings of the 15th ACM International Conference on Future and
Sustainable Energy Systems, e-Energy ’24, page 14–26, New York, NY, USA. Association for Computing
Machinery.

[Blechmann et al., 2023] Blechmann, S., Sowa, I., Schraven, M. H., Streblow, R., Müller, D., and Monti, A.
(2023). Open source platform application for smart building and smart grid controls. Automation in
Construction, 145:104622.

[Boiko et al., 2024] Boiko, O., Komin, A., Malekian, R., and Davidsson, P. (2024). Edge-Cloud Architectures for
Hybrid Energy Management Systems: A Comprehensive Review. IEEE Sensors Journal, 24(10):15748–15772.

[Chawda et al., 2020] Chawda, G. S., Shaik, A. G., Shaik, M., Padmanaban, S., Holm-Nielsen, J. B., Mahela,
O. P., and Kaliannan, P. (2020). Comprehensive Review on Detection and Classification of Power Quality
Disturbances in Utility Grid With Renewable Energy Penetration. IEEE Access, 8:146807–146830.

40 REFERENCES

[Chen et al., 2019] Chen, B., Cai, Z., and Bergés, M. (2019). Gnu-RL: A Precocial Reinforcement Learning
Solution for Building HVAC Control Using a Differentiable MPC Policy. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys
’19, pages 316–325, New York, NY, USA. Association for Computing Machinery.

[Cirillo et al., 2019] Cirillo, F., Solmaz, G., Berz, E. L., Bauer, M., Cheng, B., and Kovacs, E. (2019). A
Standard-Based Open Source IoT Platform: FIWARE. IEEE Internet of Things Magazine, 2(3):12–18.

[Coelho and Valente, 2017] Coelho, J. and Valente, M. T. (2017). Why Modern Open Source Projects Fail.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
pages 186–196, New York, NY, USA. Association for Computing Machinery.

[Dawson-Haggerty et al., 2013] Dawson-Haggerty, S., Krioukov, A., Taneja, J., Karandikar, S., Fierro, G.,
Kitaev, N., and Culler, D. (2013). BOSS: Building Operating System Services. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 13), pages 443–457, Lombard, IL. USENIX
Association.

[De Jongh et al., 2022] De Jongh, S., Gielnik, F., Mueller, F., Schmit, L., Suriyah, M., and Leibfried, T. (2022).
Physics-informed geometric deep learning for inference tasks in power systems. Electric Power Systems
Research, 211:108362.

[Dengler et al., 2023] Dengler, G., Lalbakhsh, P., Bazan, P., Dayaratne, T., Liebmann, A., and German, R.
(2023). P4 Poster abstract: A flexible simulation-optimization framework for smart grids using distributed
agents. In Abstracts of the 12th DACH+ Conference on Energy Informatics 2023. Springer.

[Ding et al., 2019] Ding, X., Du, W., and Cerpa, A. (2019). OCTOPUS: Deep Reinforcement Learning for
Holistic Smart Building Control. In Proceedings of the 6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation, BuildSys ’19, pages 326–335, New York, NY, USA.
Association for Computing Machinery.

[Eckert et al., 2019] Eckert, R., Stuermer, M., and Myrach, T. (2019). Alone or Together? Inter-organizational
Affiliations of Open Source Communities. Journal of Systems and Software, 149:250–262.

[Eurostat, 2023] Eurostat (2023). Energy consumption in households. https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Energy_consumption_in_households.

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine.

[Fogel, 2022] Fogel, K. (2022). Producing Open Source Software. https://producingoss.com/en/index.html.
[Förderer et al., 2022] Förderer, K., Hagenmeyer, V., and Schmeck, H. (2022). Automated Generation of Models

for Demand Side Flexibility Using Machine Learning: An Overview. SIGENERGY Energy Inform. Rev.,
1(1):107–120.

[Galenzowski et al., 2023] Galenzowski, J., Waczowicz, S., Meisenbacher, S., Mikut, R., and Hagenmeyer, V.
(2023). A real-world district community platform as a cyber-physical-social infrastructure systems in the
energy domain. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, pages 434–441.

[Glinz, 2007] Glinz, M. (2007). On Non-Functional Requirements. In 15th IEEE International Requirements
Engineering Conference (RE 2007), pages 21–26, Delhi. IEEE.

[Gwerder et al., 2013] Gwerder, M., Gyalistras, D., Sagerschnig, C., Smith, R. S., and Sturzenegger, D. (2013).
Final Report: Use of Weather And Occupancy Forecasts For Optimal Building Climate Control Part II:
Demonstration (OptiControl-II). Technical report, ETH Zürich.

[Han et al., 2023] Han, B., Zahraoui, Y., Mubin, M., Mekhilef, S., Seyedmahmoudian, M., and Stojcevski,
A. (2023). Home Energy Management Systems: A Review of the Concept, Architecture, and Scheduling
Strategies. IEEE Access, 11:19999–20025.

[Henggeler Antunes et al., 2022] Henggeler Antunes, C., Alves, M. J., and Soares, I. (2022). A comprehensive
and modular set of appliance operation MILP models for demand response optimization. Applied Energy,
320:119142.

[Hill et al., 2023] Hill, A., Pieper, C., Bruhn, J.-H., Schönfeldt, P., and Penaherrera Vaca, F. A. (2023).
P2 Poster abstract: District energy management simulation framework with rolling horizon approach. In
Abstracts of the 12th DACH+ Conference on Energy Informatics 2023. Springer.

[Hofmeister et al., 2024] Hofmeister, M., Bai, J., Brownbridge, G., Mosbach, S., Lee, K. F., Farazi, F., Hillman,
M., Agarwal, M., Ganguly, S., Akroyd, J., and Kraft, M. (2024). Semantic agent framework for automated
flood assessment using dynamic knowledge graphs. Data-Centric Engineering, 5:e14.

[Hunter, 2017] Hunter, K. L. (2017). Irresistible APIs: Designing Web APIs That Developers Will Love.
Manning, Shelter Island, NY.

[IEEE, 2002] IEEE (2002). IEEE Standard Glossary of Software Engineering Terminology.
[IPCC, 2022] IPCC (2022). Summary for Policymakers. In Shukla, P., Skea, J., Reisinger, A., Slade, R.,

Fradera, R., Pathak, M., Khourdajie, A. A., Belkacemi, M., van Diemen, R., Hasija, A., Lisboa, G., Luz,
S., Malley, J., McCollum, D., Some, S., and Vyas, P., editors, Climate Change 2022: Mitigation of Climate
Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel

REFERENCES 41

on Climate Change, pages 3–48. Cambridge University Press, 1 edition.
[ISO/IEC, 2023] ISO/IEC (2023). ISO/IEC 25010: Systems and software engineering —Systems and software

Quality Requirements and Evaluation (SQuaRE) — Product quality model. ISO copyright office.
[Jawarneh et al., 2019] Jawarneh, I. M. A., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari,

R., and Palopoli, A. (2019). Container Orchestration Engines: A Thorough Functional and Performance
Comparison. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1–6.

[Jin et al., 2018] Jin, B., Sahni, S., and Shevat, A. (2018). Designing Web APIs: Building APIs That Developers
Love. O’Reilly, Beijing Boston Farnham, first edition.

[Jones et al., 2015] Jones, M. B., Bradley, J., and Sakimura, N. (2015). JSON web token (JWT). RFC 7519,
RFC Editor.

[Khalid, 2024] Khalid, M. (2024). Smart grids and renewable energy systems: Perspectives and grid integration
challenges. Energy Strategy Reviews, 51:101299.

[Kondziella and Bruckner, 2016] Kondziella, H. and Bruckner, T. (2016). Flexibility requirements of renewable
energy based electricity systems – a review of research results and methodologies. Renewable and Sustainable
Energy Reviews, 53:10–22.

[Kornienko et al., 2021] Kornienko, D. V., Mishina, S. V., Shcherbatykh, S. V., and Melnikov, M. O. (2021).
Principles of securing RESTful API web services developed with python frameworks. Journal of Physics:
Conference Series, 2094(3):032016.

[Kotilainen, 2019] Kotilainen, K. (2019). Energy Prosumers’ Role in the Sustainable Energy System, pages
1–14. Springer International Publishing, Cham.

[Krebs and Cruz Martinez, 2022] Krebs, B. and Cruz Martinez, J. (2022). Developing RESTful APIs with
Python and Flask.

[Kursawe et al., 2011] Kursawe, K., Danezis, G., and Kohlweiss, M. (2011). Privacy-Friendly Aggregation for
the Smart-Grid. In Privacy Enhancing Technologies: 11th International Symposium, PETS 2011, Waterloo,
ON, Canada, July 27-29, 2011. Proceedings 11, pages 175–191. Springer.

[Lamprecht et al., 2020] Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E.,
Dominguez Del Angel, V., Van De Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow,
J., Psomopoulos, F., Gelpi, J. L., Chue Hong, N., Goble, C., and Capella-Gutierrez, S. (2020). Towards FAIR
principles for research software. Data Science, 3(1):37–59.

[Langer et al., 2013] Langer, L., Skopik, F., Kienesberger, G., and Li, Q. (2013). Privacy issues of smart e-
mobility. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pages
6682–6687.

[Lee et al., 2016] Lee, E.-K., Shi, W., Gadh, R., and Kim, W. (2016). Design and Implementation of a Microgrid
Energy Management System. Sustainability, 8(11):1143.

[Lenk et al., 2020] Lenk, S., Arnoldt, A., Rösch, D., and Bretschneider, P. (2020). Hardware/software archi-
tecture to investigate resilience in energy management for smart grids. In 2020 IEEE PES Innovative Smart
Grid Technologies Europe (ISGT-Europe), pages 51–55. IEEE.

[Loucopoulos and Champion, 1988] Loucopoulos, P. and Champion, R. (1988). Knowledge-based approach to
requirements engineering using method and domain knowledge. Knowledge-Based Systems, 1(3):179–187.

[Malviya and Dwivedi, 2022] Malviya, A. and Dwivedi, R. K. (2022). A Comparative Analysis of Con-
tainer Orchestration Tools in Cloud Computing. In 2022 9th International Conference on Computing for
Sustainable Global Development (INDIACom), pages 698–703.

[Maree and Bagle, 2022] Maree, J. P. and Bagle, M. (2022). A Building Automation and Control micro-service
architecture using Physics Inspired Neural Networks. E3S Web of Conferences, 362:13001.

[Marinakis et al., 2020] Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L.,
and Sgouridis, S. (2020). From big data to smart energy services: An application for intelligent energy
management. Future Generation Computer Systems, 110:572–586.

[Mateos-Garcia and Steinmueller, 2008] Mateos-Garcia, J. and Steinmueller, W. E. (2008). The institutions of
open source software: Examining the Debian community. Information Economics and Policy, 20(4):333–344.

[Mauser et al., 2015] Mauser, I., Hirsch, C., Kochanneck, S., and Schmeck, H. (2015). Organic Architecture for
Energy Management and Smart Grids. In 2015 IEEE International Conference on Autonomic Computing,
pages 101–108, Grenoble, France. IEEE.

[Meisenbacher et al., 2023] Meisenbacher, S., Heidrich, B., Martin, T., Mikut, R., and Hagenmeyer, V. (2023).
AutoPV: Automated photovoltaic forecasts with limited information using an ensemble of pre-trained models.
In Proceedings of the 14th ACM International Conference on Future Energy Systems, pages 386–414, Orlando
FL USA. ACM.

[Mercl and Pavlik, 2019] Mercl, L. and Pavlik, J. (2019). The Comparison of Container Orchestrators. In
Yang, X.-S., Sherratt, S., Dey, N., and Joshi, A., editors, Third International Congress on Information and
Communication Technology, volume 797, pages 677–685. Springer Singapore, Singapore.

[Mohamed et al., 2018] Mohamed, N., Al-Jaroodi, J., and Jawhar, I. (2018). Service-Oriented Big Data Ana-
lytics for Improving Buildings Energy Management in Smart Cities. In 2018 14th International Wireless

42 REFERENCES

Communications & Mobile Computing Conference (IWCMC), pages 1243–1248, Limassol. IEEE.
[Oldewurtel et al., 2012] Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V.,

Lehmann, B., and Morari, M. (2012). Use of model predictive control and weather forecasts for energy
efficient building climate control. Energy and Buildings, 45:15–27.

[Papaefthymiou and Dragoon, 2016] Papaefthymiou, G. and Dragoon, K. (2016). Towards 100% renewable
energy systems: Uncapping power system flexibility. Energy Policy, 92:69–82.

[Pipattanasomporn et al., 2015] Pipattanasomporn, M., Kuzlu, M., Khamphanchai, W., Saha, A., Rathinavel,
K., and Rahman, S. (2015). BEMOSS: An Agent Platform to Facilitate Grid-Interactive Building Operation
with IoT Devices. In 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), pages 1–6,
Bangkok, Thailand. IEEE.

[Pohl, 1996] Pohl, K. (1996). Requirements engineering: An overview. In Encyclopedia of Computer Science
and Technology, volume 36 - supp. 21. CRC Press.

[Regnell and Brinkkemper, 2005] Regnell, B. and Brinkkemper, S. (2005). Market-Driven Requirements Engi-
neering for Software Products. In Aurum, A. and Wohlin, C., editors, Engineering and Managing Software
Requirements, pages 287–308. Springer-Verlag, Berlin/Heidelberg.

[Roccotelli et al., 2022] Roccotelli, M., Mangini, A. M., and Fanti, M. P. (2022). Smart District Energy
Management With Cooperative Microgrids. IEEE Access, 10:36311–36326.

[Rodriguez et al., 2018] Rodriguez, M. A., Cuenca, L., and Ortiz, A. (2018). FIWARE Open Source Standard
Platform in Smart Farming - A Review. In Camarinha-Matos, L. M., Afsarmanesh, H., and Rezgui, Y., editors,
Collaborative Networks of Cognitive Systems, pages 581–589, Cham. Springer International Publishing.

[Ruhnau et al., 2019] Ruhnau, O., Bannik, S., Otten, S., Praktiknjo, A., and Robinius, M. (2019). Direct or
indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany
2050. Energy, 166:989–999.

[Saeed and Abdallah, 2022] Saeed, L. and Abdallah, G. (2022). Security with JWT, pages 293–308. Apress,
Berkeley, CA.

[Salpakari and Lund, 2016] Salpakari, J. and Lund, P. (2016). Optimal and rule-based control strategies for
energy flexibility in buildings with PV. Applied Energy, 161:425–436.

[Schibuola et al., 2015] Schibuola, L., Scarpa, M., and Tambani, C. (2015). Demand response management by
means of heat pumps controlled via real time pricing. Energy and Buildings, 90:15–28.

[Scott and Neray, 2021] Scott, S. and Neray, G. (2021). Best practices for REST API security: Authen-
tication and authorization. https://stackoverflow.blog/2021/10/06/best-practices-for-authentication-and-
authorization-for-rest-apis/.

[Shaikh et al., 2014] Shaikh, P. H., Nor, N. B. M., Nallagownden, P., Elamvazuthi, I., and Ibrahim, T. (2014).
A review on optimized control systems for building energy and comfort management of smart sustainable
buildings. Renewable and Sustainable Energy Reviews, 34:409–429.

[Singh, 2023] Singh, R. (2023). Flask vs FastAPI: Which Python Web Framework is Right for
You? https://www.linkedin.com/pulse/flask-vs-fastapi-which-python-web-framework-right-you-ritwik-singh-
ddxtc/.

[Sovacool et al., 2022] Sovacool, B. K., Barnacle, M. L., Smith, A., and Brisbois, M. C. (2022). Towards
improved solar energy justice: Exploring the complex inequities of household adoption of photovoltaic panels.
Energy Policy, 164:112868.

[Späth, 2023] Späth, P. (2023). REST Security, pages 175–194. Apress, Berkeley, CA.
[Srilakshmi and Singh, 2022] Srilakshmi, E. and Singh, S. P. (2022). Energy regulation of EV using MILP for

optimal operation of incentive based prosumer microgrid with uncertainty modelling. International Journal
of Electrical Power & Energy Systems, 134:107353.

[Varenhorst et al., 2024] Varenhorst, I. A. M., Hoogsteen, G., Gerards, M. E. T., and Hurink, J. L. (2024).
Enhancing Privacy Through Time Aggregation of Load Profiles in Energy Management. In 2024 IEEE 8th
Energy Conference (ENERGYCON), pages 1–6.

[Volk et al., 2017] Volk, K., Lakenbrink, C., Kurka, C., and Rupp, L. (2017). Grid-Control - An Overall Concept
for the Distribution Grid of the "Energiewende". In International ETG Congress 2017, pages 1–6.

[Washizaki, 2024] Washizaki, H., editor (2024). Guide to the Software Engineering Body of Knowledge
(SWEBOK): Version 4.0. IEEE Computer Society Press, Washington, DC, USA, 4rd edition.

[Wölfle et al., 2020] Wölfle, D., Vishwanath, A., and Schmeck, H. (2020). A Guide for the Design of Benchmark
Environments for Building Energy Optimization. In Proceedings of the 7th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys ’20, pages 220–229, New
York, NY, USA. Association for Computing Machinery.

[Xuereb Conti et al., 2023] Xuereb Conti, Z., Choudhary, R., and Magri, L. (2023). A physics-based domain
adaptation framework for modeling and forecasting building energy systems. Data-Centric Engineering,
4:e10.

[Zafar et al., 2020] Zafar, U., Bayhan, S., and Sanfilippo, A. (2020). Home Energy Management System
Concepts, Configurations, and Technologies for the Smart Grid. IEEE Access, 8:119271–119286.

REFERENCES 43

A. Interaction Patterns Between EMS and Service
In Section 4.2 we have discussed that it may be necessary to fit system-specific parameters to
utilize the full potential of a forecasting or optimization service. Furthermore, we have pointed
out that this fitting process will usually need some form of historic measurements and that
some EMS users will want to keep these historic measurements on-premise while others will
not be capable of doing so. In this section, we will contrast the resulting interaction patterns
between EMS and service based on this important difference. To this end, we will return to
the example used in the functional requirements section, i.e. a service that provides forecasts
of PV power generation.

A.1. Local Storage of Measurements and Parameters
Let us first inspect the case of an EMS that keeps historic measurements on-premise, i.e. a
system with an architecture like the one displayed in Figure 2. The interaction of such an EMS
with the considered PV power generation forecast service would contain the following steps:

1. The EMS calls the API endpoint of the service related to the fitting process. This
includes pushing historic measurements of the power generated by the PV system for
which forecasts should be computed. Note that the EMS may need to repeat this step in
a certain interval, especially once the forecasting performance deteriorates. Finding the
right interval for refitting the parameters is solely the responsibility of the EMS, as the
service provider has no access to the measured data and can thus not evaluate the
performance of the forecasts provided by the service.

2. The EMS retrieves the system-specific parameters once the service has finished the fitting
process. The EMS must store these parameters locally.

3. The EMS requests a forecast from the service by issuing a call to the respective API
endpoint of the service (this is likely repeated with arbitrary periodicity). The call must
contain the arguments (e.g. the coordinates of the target system) as well as the fitted
parameters (as returned in the previous step).

4. The EMS retrieves the computed forecast once the service has finished computing it.

With this interaction pattern, the service cannot request any data of the HAL, as the EMS
needs to actively push the data to the service. This means that the EMS (developer) is always
in control over the data stored by the system.

A.2. Cloud Storage of Measurements and Parameters
The second case is an EMS that has been configured to push the relevant historic measurements
to a data platform that is accessible to the service provider, as summarized in Figure 7

This scenario is closer to a conventional "as a service" construct and allows the service
provider to take over responsibility and complexity from the EMS. The price for this conve-
nience is that the historic measurements of the EMS are shared with the service provider,
which might occur as a privacy issue for some users. The resulting interaction pattern between
the EMS, data platform, and service contains the following steps:

1. The EMS continuously pushes all relevant measurements to the data platform.
Furthermore, the EMS must upload all other information required to invoke the desired
services (e.g. the coordinates representing the global position of the target PV system) to
the data platform.

44 REFERENCES

Energy Services in Cloud

Forecasting Service 1

Forecasting
Code 1

Service
Framework

Forecasting Service i

Forecasting
Code i

Service
Framework

Optimization Service 1

Optimization
Code 1

Service
Framework

Optimization Service j

...

Optimization
Code j

Service
Framework

...

Data Platform in Cloud

may also interact with

Graphical User
Interface

Platform Core

Scheduler

Interfaces

Database

User

Local EMS

interacts with

Graphical User Interface

Physical Devices

Hardware Abstraction Layer

Device 1 Device n...

EMS Core

Controller

Interfaces

Monitoring Analysis

Figure 7. High-level architecture of an EMS indirectly utilizing forecasting and optimization
services via a platform. Note that some functionality like Monitoring or Analysis may, in fact,
be implemented as part of the cloud data platform instead.

2. The service provider78 retrieves the relevant historic measurements from the data platform
and uses these to call the API endpoint of the service related to the fitting process.

3. The service provider retrieves the system-specific parameters after the service has
finished computing these and stores the parameters in the data platform79.

4. At periodic intervals (e.g. every 15 minutes) or certain events (new information is
available), the service provider retrieves the system-specific parameters as well as all
other information to invoke the intended service and utilizes this data to request the
forecast required by the EMS from the service.

5. Once the service has finished computing the forecast, the service provider collects it from
the service and writes the forecast to the data platform.

6. The EMS periodically polls the data platform for new forecasts and retrieves these once
available.

78In fact this could be a third party that is not a service provider but invokes the services on behalf of the EMS,
e.g. as a commercial offering. However, this does not change the interaction pattern and is thus neglected here.

79Actually, it is not important whether the parameters are stored in the same data platform or some other database.

	Introduction
	Nomenclature
	Related Work
	Frameworks for Service Development
	Forecasting and Optimization Services
	Energy Management Systems, Platforms, Communities and Market Places

	Requirements Analysis
	Analysis of Application Areas
	Functional Requirements
	Non-Functional Requirements

	Design Concept
	API Design
	Service Components
	Service Architecture
	Operation Concept

	Implementation
	Worker, Garbage Collector, and Inter-Process Communication
	API
	Other Functionality

	Community Concept
	Evaluation
	Deriving Services
	The Forecasting or Optimization Code
	The Data Model
	The Worker
	The API
	The Service

	Client Implementation
	Scalability of Services
	Experiment Design
	Experiment Execution and Results

	Comparison of Requirements with Concept and Implementation

	Conclusion and Outlook
	Interaction Patterns Between EMS and Service
	Local Storage of Measurements and Parameters
	Cloud Storage of Measurements and Parameters

